These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 5766061)

  • 1. Rapid assessment of pulsed neutron doses by an energy-independent foil activation system.
    Block S
    Health Phys; 1969 Jan; 16(1):93-8. PubMed ID: 5766061
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermoluminescence response of LiF to reactor neutrons.
    Reddy AR; Ayyangar K; Brownell GL
    Radiat Res; 1969 Dec; 40(3):552-62. PubMed ID: 5352955
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization and utilization of a Bonner sphere set based on gold activation foils.
    Thomas DJ; Hawkes NP; Jones LN; Kolkowski P; Roberts NJ
    Radiat Prot Dosimetry; 2007; 126(1-4):229-33. PubMed ID: 17496291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoluminescent response of lithium fluoride to radiations with different LET.
    Suntharalingam N; Cameron JR
    Phys Med Biol; 1969 Jul; 14(3):397-410. PubMed ID: 5789345
    [No Abstract]   [Full Text] [Related]  

  • 5. The effects of fast neutron exposure on the 7-LiF thermoluminescent response to gamma rays.
    Oltman BG; Kastner J; Tedeschi P; Beggs JN
    Health Phys; 1967 Aug; 13(8):918-9. PubMed ID: 6040498
    [No Abstract]   [Full Text] [Related]  

  • 6. The response of selected thermoluminescent materials to fast neutron exposures. BNWL-1080.
    Endres GW; Kocher LF
    BNWL Rep; 1969 Jun; ():1-16. PubMed ID: 5308890
    [No Abstract]   [Full Text] [Related]  

  • 7. [Neutron dosimetry by means of thermoluminescence of lithium fluoride].
    Stolterfoht N; Jacobi W
    Strahlentherapie; 1967 Dec; 134(4):536-44. PubMed ID: 5585411
    [No Abstract]   [Full Text] [Related]  

  • 8. Dosimetry technology studies. BNWL-339.
    Endres WR; Friend PC; Kocher LF; Baumgartner WV; Brackenbush LW; Rising FL; Faust IG; Bramson PE
    BNWL Rep; 1966 Jan; ():1-30. PubMed ID: 5301055
    [No Abstract]   [Full Text] [Related]  

  • 9. Design and characterisation of a pulsed neutron interrogation facility.
    Favalli A; Pedersen B
    Radiat Prot Dosimetry; 2007; 126(1-4):74-7. PubMed ID: 17496298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of thermal neutron irradiation on the thermoluminescent response of CON-RAD type-7 lithium fluoride.
    Mason EW
    Phys Med Biol; 1970 Jan; 15(1):79-90. PubMed ID: 5418324
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of dose patterns in a dog exposed to neutrons and x-rays.
    Wingate CL; Page NP; Ainsworth EJ
    Radiat Res; 1967 Nov; 32(3):404-16. PubMed ID: 6065240
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy dependence of LiF and CaF2 thermoluminescent dosimeters for high energy electrons.
    Nakajima T; Hiraoka T; Habu T
    Health Phys; 1968 Mar; 14(3):266-7. PubMed ID: 5637399
    [No Abstract]   [Full Text] [Related]  

  • 13. [Dosimetry of neutron beams of "fast" reactor by chemical and thermoluminescent techniques].
    Riabukhin IuS; Tkachenko VV; Bologova GS; Vakhlakova TV; Obaturov GM; Vasil'ev AG
    Med Radiol (Mosk); 1969 Aug; 14(8):66-73. PubMed ID: 5376603
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of different techniques used for estimation of intermediate neutron dose equivalent.
    Gomaa MA
    Health Phys; 1971 Aug; 21(2):324-6. PubMed ID: 5094204
    [No Abstract]   [Full Text] [Related]  

  • 15. Monte Carlo calculations and validation of a gold foil-based Bonner sphere system.
    Fernández F; Bouassoule T; Amgarou K; Domingo C; Garcia MJ; Lacoste V; Gressier V; Muller H
    Radiat Prot Dosimetry; 2007; 126(1-4):366-70. PubMed ID: 17513852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion reactor neutron dosimetry.
    Barton TP; Easterly CE; Ziemer PL
    Health Phys; 1981 Feb; 40(2):219-22. PubMed ID: 7216799
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP.
    Taniguchi S; Nakao N; Nakamura T; Yashima H; Iwamoto Y; Satoh D; Nakane Y; Nakashima H; Itoga T; Tamii A; Hatanaka K
    Radiat Prot Dosimetry; 2007; 126(1-4):23-7. PubMed ID: 17502318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual neutron monitoring in workplaces with mixed neutron/photon radiation.
    Bolognese-Milsztajn T; Bartlett D; Boschung M; Coeck M; Curzio G; d'Errico F; Fiechtner A; Giusti V; Gressier V; Kyllönen J; Lacoste V; Lindborg L; Luszik-Bhadra M; Molinos C; Pelcot G; Reginatto M; Schuhmacher H; Tanner R; Vanhavere F; Derdau D
    Radiat Prot Dosimetry; 2004; 110(1-4):753-8. PubMed ID: 15353743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of the IRSN graphite moderated Americium-Beryllium neutron field.
    Lacoste V; Gressier V; Muller H; Lebreton L;
    Radiat Prot Dosimetry; 2004; 110(1-4):135-9. PubMed ID: 15353636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.
    Williams AM; Beeley PA; Spyrou NM
    Radiat Prot Dosimetry; 2004; 110(1-4):497-502. PubMed ID: 15353698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.