These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 5767053)
1. Oxoenoic acids as metabolites in the bacterial degradation of catechols. Bayly RC; Dagley S Biochem J; 1969 Feb; 111(3):303-7. PubMed ID: 5767053 [TBL] [Abstract][Full Text] [Related]
2. The metabolism of cresols by species of Pseudomonas. Bayly RC; Dagley S; Gibson DT Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268 [TBL] [Abstract][Full Text] [Related]
3. Formation of 2-hydroxy-6-oxo-2, trans-4, trans-heptad-ienoic acid from 3-methylcatechol by a Pseudomonas. Catelani D; Fiecchi A; Galli E Experientia; 1968 Feb; 24(2):113. PubMed ID: 5643787 [No Abstract] [Full Text] [Related]
4. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. 3. Enzymes of the catechol pathway. Ornston LN J Biol Chem; 1966 Aug; 241(16):3795-9. PubMed ID: 5330966 [No Abstract] [Full Text] [Related]
5. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. Ornston LN; Stanier RY J Biol Chem; 1966 Aug; 241(16):3776-86. PubMed ID: 5916391 [No Abstract] [Full Text] [Related]
6. Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Catelani D; Fiecchi A; Galli E Biochem J; 1971 Jan; 121(1):89-92. PubMed ID: 5116566 [TBL] [Abstract][Full Text] [Related]
7. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. Ornston LN J Biol Chem; 1966 Aug; 241(16):3787-94. PubMed ID: 5916392 [No Abstract] [Full Text] [Related]
9. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. Ornston LN J Biol Chem; 1966 Aug; 241(16):3800-10. PubMed ID: 5916393 [No Abstract] [Full Text] [Related]
10. Stereospecific enzymes in the degradation of aromatic compounds by pseudomonas putida. Collinsworth WL; Chapman PJ; Dagley S J Bacteriol; 1973 Feb; 113(2):922-31. PubMed ID: 4690969 [TBL] [Abstract][Full Text] [Related]
11. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad. Jeffrey AM; Knight M; Evans WC Biochem J; 1972 Nov; 130(2):373-81. PubMed ID: 4146277 [TBL] [Abstract][Full Text] [Related]
12. A simplified method for the preparation of 14 C-labelled branched-chain -oxo acids. Rüdiger HW; Langenbeck U; Goedde HW Biochem J; 1972 Jan; 126(2):445-6. PubMed ID: 5071181 [No Abstract] [Full Text] [Related]
13. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer. Cánovas JL; Wheelis ML; Stanier RY Eur J Biochem; 1968 Jan; 3(3):293-304. PubMed ID: 5645525 [No Abstract] [Full Text] [Related]
14. The bacterial degradation of pantothenic acid. IV. Enzymatic conversion of aldopantoate to alpha-ketoisovalerate. Magee PT; Snell EE Biochemistry; 1966 Feb; 5(2):409-16. PubMed ID: 4287371 [No Abstract] [Full Text] [Related]
15. The metabolism of thymol by a Pseudomonas. Chamberlain EM; Dagley S Biochem J; 1968 Dec; 110(4):755-63. PubMed ID: 4303067 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. Reiner AM J Bacteriol; 1971 Oct; 108(1):89-94. PubMed ID: 4399343 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of omicron-cresol by Pseudomonas aeruginosa strain T1. Ribbons DW J Gen Microbiol; 1966 Aug; 44(2):221-31. PubMed ID: 4961370 [No Abstract] [Full Text] [Related]