These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 5767332)

  • 21. Action potentials without contraction in frog skeletal muscle fibers with disrupted transverse tubules.
    Gage PW; Eisenberg RS
    Science; 1967 Dec; 158(3809):1702-3. PubMed ID: 6059652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle.
    Jaimovich E; Venosa RA; Shrager P; Horowicz P
    J Gen Physiol; 1976 Apr; 67(4):399-416. PubMed ID: 1083895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker.
    Eisenberg B; Eisenberg RS
    J Cell Biol; 1968 Nov; 39(2):451-67. PubMed ID: 5692585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The passive electrical properties of frog skeletal muscle fibres at different sarcomere lengths.
    Dulhunty AF; Franzini-Armstrong C
    J Physiol; 1977 Apr; 266(3):687-711. PubMed ID: 301189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sarcolemmal slow conductance increase of frog sartorius fibers during hyperpolarization.
    Takeda K
    Jpn J Physiol; 1975; 25(4):515-24. PubMed ID: 1560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of glycerol treatment on crab muscle fibres.
    Papir D
    J Physiol; 1973 Apr; 230(2):313-30. PubMed ID: 4708897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical properties of the myotendon region of frog twitch muscle fibers measured in the frequency domain.
    Milton RL; Mathias RT; Eisenberg RS
    Biophys J; 1985 Aug; 48(2):253-67. PubMed ID: 3876852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in electrical properties of muscle membrane systems during decoupling and recoupling induced by glycerol.
    Zacharová D; Poledna J; Zachar J
    Physiol Bohemoslov; 1978; 27(5):467-76. PubMed ID: 153540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mode of transverse spread of contraction initiated by local activation in single frog muscle fibers.
    Sugi H; Ochi R
    J Gen Physiol; 1967 Oct; 50(9):2167-76. PubMed ID: 6064146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invaginated membrane in crustacean tonic muscle fibers: estimates of membrane capacitance.
    Rossner KL; Sherman RG
    Am J Physiol; 1978 Nov; 235(5):C220-6. PubMed ID: 727244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.
    Nakajima S; Bastian J
    J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The maintenance of resting potentials in glycerol-treated muscle fibres.
    Eisenberg RS; Howell JN; Vaughan PC
    J Physiol; 1971 May; 215(1):95-102. PubMed ID: 5579685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromechanical coupling in tubular muscle fibers. II. Resistance and capacitance of one transverse tubule.
    Gilai A
    J Gen Physiol; 1976 Mar; 67(3):343-67. PubMed ID: 1262853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of muscle cable parameters from a single membrane voltage response.
    Farnbach GC; Barchi RL
    J Membr Biol; 1977 Apr; 32(1-2):133-49. PubMed ID: 870696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved vaseline gap voltage clamp for skeletal muscle fibers.
    Hille B; Campbell DT
    J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the impedance of frog skeletal muscle fibers.
    Valdiosera R; Clausen C; Eisenberg RS
    Biophys J; 1974 Apr; 14(4):295-315. PubMed ID: 4857358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impedance of frog skeletal muscle fibers in various solutions.
    Valdiosera R; Clausen C; Eisenberg RS
    J Gen Physiol; 1974 Apr; 63(4):460-91. PubMed ID: 4544879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in conductances of frog sartorius fibers produced by CO2, ReO4-, and temperature.
    Sperelakis N
    Am J Physiol; 1969 Oct; 217(4):1069-75. PubMed ID: 5824307
    [No Abstract]   [Full Text] [Related]  

  • 39. A reconstruction of charge movement during the action potential in frog skeletal muscle.
    Huang CL; Peachey LD
    Biophys J; 1992 May; 61(5):1133-46. PubMed ID: 1600077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analysis of the relationship between the current and potential generated by a quantum of acetylcholine in muscle fibers without transverse tubules.
    Gage PW; McBurney RN
    J Membr Biol; 1973; 12(3):247-72. PubMed ID: 4205467
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.