These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 576823)

  • 21. Tryptophan synthase: the workings of a channeling nanomachine.
    Dunn MF; Niks D; Ngo H; Barends TR; Schlichting I
    Trends Biochem Sci; 2008 Jun; 33(6):254-64. PubMed ID: 18486479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium.
    Raboni S; Mozzarelli A; Cook PF
    Biochemistry; 2007 Nov; 46(45):13223-34. PubMed ID: 17927213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Supramolecular organization of glycolytic enzymes].
    Kurganov BI; Sugrobova NP; Mil'man LS
    Mol Biol (Mosk); 1986; 20(1):41-52. PubMed ID: 2936949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Enzymatic mechanisms of compensation of deleterious mutations].
    Vol'kenshteĭn MV; Gol'dshteĭn BN
    Mol Biol (Mosk); 1986; 20(6):1645-54. PubMed ID: 3807914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution.
    Ritsert K; Huber R; Turk D; Ladenstein R; Schmidt-Bäse K; Bacher A
    J Mol Biol; 1995 Oct; 253(1):151-67. PubMed ID: 7473709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two subunits of heptaprenyl diphosphate synthase of Bacillus subtilis form a catalytically active complex.
    Zhang YW; Koyama T; Marecak DM; Prestwich GD; Maki Y; Ogura K
    Biochemistry; 1998 Sep; 37(38):13411-20. PubMed ID: 9748348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the importance of protein structure to nature's routes for divergent evolution in TIM barrel enzymes.
    Wise EL; Rayment I
    Acc Chem Res; 2004 Mar; 37(3):149-58. PubMed ID: 15023082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tryptophan synthetase of E. coli: a multifunctional, multicomponent enzyme; a commentary on 'A Second Reaction Catalyzed by the Tryptophan Synthetase of Escherichia coli'.
    Yanofsky C
    Biochim Biophys Acta; 1989; 1000():133-7. PubMed ID: 2673356
    [No Abstract]   [Full Text] [Related]  

  • 29. Structural studies on the 2.25-MDa homomultimeric phosphoenolpyruvate synthase from Staphylothermus marinus.
    Harauz G; Cicicopol C; Hegerl R; Cejka Z; Goldie K; Santarius U; Engel A; Baumeister W
    J Struct Biol; 1996; 116(2):290-301. PubMed ID: 8812985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature as a selective factor in protein evolution: the adaptational strategy of "compromise".
    Somero GN
    J Exp Zool; 1975 Oct; 194(1):175-88. PubMed ID: 1104753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic regulation and ligand-induced conformational changes of tryptophan synthase.
    Fatmi MQ; Ai R; Chang CE
    Biochemistry; 2009 Oct; 48(41):9921-31. PubMed ID: 19764814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The role of multi-enzyme complexes in the integration of cell metabolism].
    Kurganov BI
    Mol Biol (Mosk); 1986; 20(6):1530-8. PubMed ID: 3807909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilized model systems of enzyme sequences.
    Mosbach K; Mattiasson B
    Curr Top Cell Regul; 1978; 14():197-241. PubMed ID: 32013
    [No Abstract]   [Full Text] [Related]  

  • 34. The analysis of metabolite channelling in multienzyme complexes and multifunctional proteins.
    Easterby JS
    Biochem J; 1989 Dec; 264(2):605-7. PubMed ID: 2604733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological significance of metabolite channelling: author's response to commentaries.
    Ovádi J
    J Theor Biol; 1991 Sep; 152(1):135-41. PubMed ID: 1753758
    [No Abstract]   [Full Text] [Related]  

  • 36. Enzyme-enzyme interactions and their metabolic role.
    Srere PA; Ovadi J
    FEBS Lett; 1990 Aug; 268(2):360-4. PubMed ID: 2200717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological constraints on evolution of enzymes for cellular metabolic pathways.
    Srivastava DK
    J Theor Biol; 1991 Sep; 152(1):93-100. PubMed ID: 1753776
    [No Abstract]   [Full Text] [Related]  

  • 38. Engineering a living cell to desired metabolite concentrations and fluxes: pathways with multifunctional enzymes.
    Kholodenko BN; Westerhoff HV; Schwaber J; Cascante M
    Metab Eng; 2000 Jan; 2(1):1-13. PubMed ID: 10935931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How evolution dismantles and reassembles multienzyme complexes.
    Mattevi A
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34996854
    [No Abstract]   [Full Text] [Related]  

  • 40. [The prospectives of the use of enzymes of clinical analysis (author's transl)].
    Murachi T
    Rinsho Byori; 1977 May; 25(5):384-7. PubMed ID: 561224
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.