These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 57694)

  • 1. The cochlear nuclei in monkeys after dihydrostreptomycin or noise exposure.
    Hall JG
    Acta Otolaryngol; 1976; 81(3-4):344-52. PubMed ID: 57694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The patas monkey as a model for dihydrostreptomycin ototoxicity.
    Hawkins JE; Stebbins WC; Johnsson LG; Moody DB; Muraski A
    Acta Otolaryngol; 1977; 83(1-2):123-29. PubMed ID: 65898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The species-specific nature of the ototoxicity of dihydrostreptomycin in the patas monkey.
    Stebbins WC; Moody DB; Hawkins JE; Johnsson LG; Norat MA
    Neurotoxicology; 1987; 8(1):33-44. PubMed ID: 2436117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hearing loss and cochlear pathology in monkeys after noise exposure.
    Hawkins JE; Johnsson LG; Stebbins WC; Moody DB; Coombs SL
    Acta Otolaryngol; 1976; 81(3-4):337-43. PubMed ID: 817561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral ototoxicology.
    Stebbins WC; Rudy MC
    Environ Health Perspect; 1978 Oct; 26():43-51. PubMed ID: 82507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic properties of the intra-aural reflex in lesions of the lower auditory pathway. An experimental study in rabbits.
    Borg E
    Acta Otolaryngol; 1982; 93(1-2):19-29. PubMed ID: 7064692
    [No Abstract]   [Full Text] [Related]  

  • 7. Neurotoxicity of streptomycin and dihydrostreptomycin.
    NILSSON JM; BLECK EE
    Ann Otol Rhinol Laryngol; 1957 Jun; 66(2):390-1. PubMed ID: 13459234
    [No Abstract]   [Full Text] [Related]  

  • 8. [Clinical and experimental study of a lesion to the organ of hearing due to the action of pulsed noises].
    Pal'gov VI; Doroshenko PN; Rozladka AI; Bakaĭ EA
    Gig Tr Prof Zabol; 1976 Apr; (4):28-32. PubMed ID: 1261861
    [No Abstract]   [Full Text] [Related]  

  • 9. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive periods of susceptibility to auditory trauma in mammals.
    Saunders JC; Chen CS
    Environ Health Perspect; 1982 Apr; 44():63-6. PubMed ID: 7044777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated TTS exposures in monkeys: alterations in hearing, cochlear structure, and single-unit thresholds.
    Lonsbury-Martin BL; Martin GK; Bohne BA
    J Acoust Soc Am; 1987 May; 81(5):1507-18. PubMed ID: 3584688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of the neuroglia of the acoustic nuclei, sub-cortical centers and auditory cortex, of cats intoxicated with dihydrostreptomycin.
    DE SA G
    Laryngoscope; 1958 Mar; 68(3):571-86. PubMed ID: 13551106
    [No Abstract]   [Full Text] [Related]  

  • 14. Transport of radioactivity from primary auditory neurons beyond the cochlear nuclei.
    Carpenter MB; Batton RB; Peter P
    J Comp Neurol; 1978 Jun; 179(3):517-33. PubMed ID: 417099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.
    Singer W; Kasini K; Manthey M; Eckert P; Armbruster P; Vogt MA; Jaumann M; Dotta M; Yamahara K; Harasztosi C; Zimmermann U; Knipper M; Rüttiger L
    FASEB J; 2018 Jun; 32(6):3005-3019. PubMed ID: 29401591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental study on cochlear damage induced by dihydrostreptomycin].
    Ogawa Y
    Nihon Jibiinkoka Gakkai Kaiho; 1968 Feb; 71(2):217-32. PubMed ID: 4175709
    [No Abstract]   [Full Text] [Related]  

  • 17. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic injury and the physiology of hearing.
    Schmiedt RA
    J Acoust Soc Am; 1984 Nov; 76(5):1293-317. PubMed ID: 6096430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of crossed olivo-cochlear bundle stimulation on acoustic trauma.
    Takeyama M; Kusakari J; Nishikawa N; Wada T
    Acta Otolaryngol; 1992; 112(2):205-9. PubMed ID: 1604980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Iron Diet Increases Susceptibility to Noise-Induced Hearing Loss in Young Rats.
    Yu F; Hao S; Yang B; Zhao Y; Yang J
    Nutrients; 2016 Jul; 8(8):. PubMed ID: 27483303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.