These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 5770623)

  • 21. [The uptake and output of calcium ions by sarcoplasmic vesicles of the rabbit skeletal muscle under the influence of ethanol].
    Jenny E
    Schweiz Arch Tierheilkd; 1970 Sep; 112(9):436-42. PubMed ID: 4249044
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetics of calcium transport by fragmented sarcoplasmic reticulum.
    Worsfold M; Peter JB
    J Biol Chem; 1970 Nov; 245(21):5545-52. PubMed ID: 5472356
    [No Abstract]   [Full Text] [Related]  

  • 23. Possible effects of membrane polarization on calcium uptake by and release from sarcoplasmic reticulum vesicles.
    Jdaïaa H; Brûlé G; Fournier F; Guilbault P
    Gen Physiol Biophys; 1989 Feb; 8(1):39-56. PubMed ID: 2525504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The influence of oxalate on calcium transport of isolated sarcoplasmic reticular vesicles].
    Makinose M; Hasselbach W
    Biochem Z; 1965 Dec; 343(4):360-82. PubMed ID: 5875437
    [No Abstract]   [Full Text] [Related]  

  • 25. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 26. Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic rticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.
    Weber A
    J Gen Physiol; 1971 Jan; 57(1):50-63. PubMed ID: 5539338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imidazole and sequestration of calcium ions by sarcoplasmic reticulum.
    Yu BP; Masoro EJ; DeMartinis FD
    Nature; 1967 Nov; 216(5117):822-4. PubMed ID: 4229353
    [No Abstract]   [Full Text] [Related]  

  • 28. Quinine and caffeine effects on 45Ca movements in frog sartorius muscle.
    Isaacson A; Sandow A
    J Gen Physiol; 1967 Sep; 50(8):2109-28. PubMed ID: 6066065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of quinine on tension development, membrane potentials and excitation-contraction coupling of crab skeletal muscle fibres.
    Huddart H
    J Physiol; 1971 Aug; 216(3):641-57. PubMed ID: 5565642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Molecular mechanism of the Ca2+ transport by the sarcoplasmic reticulum].
    Yamamoto T
    Tanpakushitsu Kakusan Koso; 1971 May; 16(5):325-34. PubMed ID: 4252112
    [No Abstract]   [Full Text] [Related]  

  • 31. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulatory mechanisms ofthe calcium transport system of ramented rabbit sarcoplasmic rticulum. II. Inhibition of outflux in calcium-free media.
    Weber A
    J Gen Physiol; 1971 Jan; 57(1):64-70. PubMed ID: 5539339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. THE VELOCITY OF CALCIUM BINDING OF ISOLATED SARCOPLASMIC RETICULUM.
    OHNISHI T; EBASHI S
    J Biochem; 1964 Jun; 55():599-603. PubMed ID: 14216403
    [No Abstract]   [Full Text] [Related]  

  • 35. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle.
    Carvalho AP; Leo B
    J Gen Physiol; 1967 May; 50(5):1327-52. PubMed ID: 6033589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the prostaglandin derivative PGBx on calcium uptake and release by skeletal muscle sarcoplasmic reticulum.
    Kruger M; Booyens J
    S Afr Med J; 1982 Nov; 62(23):855-8. PubMed ID: 6216610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca-2+-dependent inhibitory effects of Na+ and K+ on Ca-2+ transport in sarcoplasmic reticulum vesicles.
    Gattass CR; De Meis L
    Biochim Biophys Acta; 1975 May; 389(3):506-15. PubMed ID: 804935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle.
    Suko J; Winkler F; Scharinger B; Hellmann G
    Biochim Biophys Acta; 1976 Sep; 443(3):571-86. PubMed ID: 134747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Passive binding of Ca2+ by fragments of the sarcoplasmic reticulum of frog skeletal muscles].
    Esyrev OV; Sarsenova ShS; Uspanova ZhK; Kniazevskaia IB; Turmukhambetova VK
    Vopr Med Khim; 1982; 28(5):51-5. PubMed ID: 6983776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.