These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The efflux of calcium from single crab and barnacle muscle fibres. Ashley CC; Caldwell PC; Lowe AG J Physiol; 1972 Jun; 223(3):735-55. PubMed ID: 5045739 [TBL] [Abstract][Full Text] [Related]
4. The efflux of magnesium from single crustacean muscle fibres. Ashley CC; Ellory JC J Physiol; 1972 Nov; 226(3):653-74. PubMed ID: 4629263 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of anion permeation through the muscle fibre membrane of an elasmobranch fish, Taeniura lymma. Hagiwara S; Takahashi K J Physiol; 1974 Apr; 238(1):109-27. PubMed ID: 4838800 [TBL] [Abstract][Full Text] [Related]
6. Influence of changes in external potassium and chloride ions on membrane potential and intracellular potassium ion activity in rabbit ventricular muscle. Fozzard HA; Lee CO J Physiol; 1976 Apr; 256(3):663-89. PubMed ID: 1271296 [TBL] [Abstract][Full Text] [Related]
7. Phosphate fluxes in single muscle fibres of the spider crab, Maia squinado. Caldwell PC; Lowe AG J Physiol; 1980 Apr; 301():401-13. PubMed ID: 7411440 [TBL] [Abstract][Full Text] [Related]
8. Anion permeability of frog skeletal muscle. Moore LE J Gen Physiol; 1969 Jul; 54(1):33-52. PubMed ID: 5792364 [TBL] [Abstract][Full Text] [Related]
9. The effect of temperature on the membrane conductance of the smooth muscle of the guinea-pig taenia coli. Brading A; Bülbring E; Tomita T J Physiol; 1969 Feb; 200(3):621-35. PubMed ID: 5765851 [TBL] [Abstract][Full Text] [Related]
10. Chloride fluxes in isolated dialyzed barnacle muscle fibers. DiPolo R J Gen Physiol; 1972 Oct; 60(4):471-97. PubMed ID: 5074810 [TBL] [Abstract][Full Text] [Related]
11. The influence of potassium and chloride ions on the membrane potential of single muscle fibers of the crayfish. Hinkle M; Heller P; Van der Kloot W Comp Biochem Physiol A Comp Physiol; 1971 Sep; 40(1):181-201. PubMed ID: 4401094 [No Abstract] [Full Text] [Related]
13. Calculation of the membrane potential in smooth muscle cells of the guinea-pig's taenia coli by the Goldman equation. Casteels R J Physiol; 1969 Nov; 205(1):193-208. PubMed ID: 5354999 [TBL] [Abstract][Full Text] [Related]
14. Influence of chloride concentration and pH on the 36Cl efflux from depolarized skeletal muscle of Rana temporaria. Skydsgaard JM J Physiol; 1987 Apr; 385():49-67. PubMed ID: 3498825 [TBL] [Abstract][Full Text] [Related]
15. Reduction of potassium permeability by chloride substitution in cardiac cells. Carmeliet E; Verdonck F J Physiol; 1977 Feb; 265(1):193-206. PubMed ID: 850161 [TBL] [Abstract][Full Text] [Related]
16. The chloride conductance of intermediate fibres from frog muscles. Lorković H Gen Physiol Biophys; 1987 Dec; 6(6):561-9. PubMed ID: 3502101 [TBL] [Abstract][Full Text] [Related]
17. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Fink R; Lüttgau HC J Physiol; 1976 Dec; 263(2):215-38. PubMed ID: 1087932 [TBL] [Abstract][Full Text] [Related]
18. The dependence of membrane potential on extracellular chloride concentration in mammalian skeletal muscle fibres. Dulhunty AF J Physiol; 1978 Mar; 276():67-82. PubMed ID: 650497 [TBL] [Abstract][Full Text] [Related]
19. The pH dependence of chloride net flux in skeletal muscle fibres of Rana temporaria. Hansen M; Skydsgaard JM J Physiol; 1992 Apr; 449():237-45. PubMed ID: 1522511 [TBL] [Abstract][Full Text] [Related]
20. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin. Strickholm A Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]