BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 5771164)

  • 1. Accumulation of copper and inhibition of lactate dehydrogenase activity in human senile cataractous lens.
    Nath R; Srivastava SK; Singh K
    Indian J Exp Biol; 1969 Jan; 7(1):25-6. PubMed ID: 5771164
    [No Abstract]   [Full Text] [Related]  

  • 2. [Total activity and isoenzyme spectrum of lactate dehydrogenase in a normal human crystalline lens and in senile cataract].
    Kasavina BS; Zangieva VD; Drozhzheva VV
    Biull Eksp Biol Med; 1972 May; 73(5):51-4. PubMed ID: 5038310
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic alteratios in experimental cataract. I. Inhibition of lactate dehydrogenase and appearance of O-diphenol oxidase in cataractous lens of naphthalene fed rabbits.
    Srivastava SK; Nath R
    Indian J Med Res; 1969 Feb; 57(2):225-7. PubMed ID: 4977064
    [No Abstract]   [Full Text] [Related]  

  • 4. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Na-K-ATPase activity in the normal aging crystalline lens and in senile cataract].
    Nordmann J; Klethi J
    Arch Ophtalmol (Paris); 1976; 36(6-7):523-8. PubMed ID: 136953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Studies of human senile cataract: changes in some glycolytic enzymes and adenosine triphosphate].
    Maraini G; Carta F; Santori M
    Ann Ottalmol Clin Ocul; 1966 Jul; 92(7):482-9. PubMed ID: 4230675
    [No Abstract]   [Full Text] [Related]  

  • 7. Enzyme lactic dehydrogenase (LDH).
    Chadha MR; Singh K; Singh B
    Indian J Ophthalmol; 1981 Dec; 29(4):325-9. PubMed ID: 7346452
    [No Abstract]   [Full Text] [Related]  

  • 8. The study of G6PD in erythrocyte and lens in senile and presenile cataract.
    Chen Y; Zeng L; Ma Q; Su W; Mao W
    Yan Ke Xue Bao; 1992 Mar; 8(1):12-5, 33. PubMed ID: 1286674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactate dehydrogenase of concentric zones of human senile cataracts and calf lenses produced by ultrasound.
    Gershbein LL; Lieberman HL
    Biotechnol Appl Biochem; 1989 Dec; 11(6):602-9. PubMed ID: 2597357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sorbitol dehydrogenase enzyme activity in the postmortem human crystalline lens and in the cataractous lens].
    Cioli S; Mazzilli G; Nizzola GM; Panagis P
    Ann Ottalmol Clin Ocul; 1969 May; 95(5):440-6. PubMed ID: 5401687
    [No Abstract]   [Full Text] [Related]  

  • 11. [The role of trace elements in the appearance of senile cataracts].
    Aposkitis C
    Ann Ocul (Paris); 1970 Oct; 203(10):925-30. PubMed ID: 5488887
    [No Abstract]   [Full Text] [Related]  

  • 12. [Activity of the enzymes of glycolysis and Krebs cycle in various sections of human cataract lenses].
    Friedburg D; Moog P
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1968; 68():126-30. PubMed ID: 5756759
    [No Abstract]   [Full Text] [Related]  

  • 13. Changes in glutathione, glutathione-linked enzymes and hexose monophosphate shunt enzymes in senile cataract.
    George S; Jyothi M; Mathew B; Shashidhar S
    Indian J Physiol Pharmacol; 2003 Apr; 47(2):191-6. PubMed ID: 15255623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Variation of some enzymatic activities of the rat crystalline lens in experimental galactose cataract (lactate dehydrogenase, leucine aminopeptidase, phosphoglucose isomerase].
    Arnaud A; Bastide P; Tronche P; Dastugue G
    C R Seances Soc Biol Fil; 1968; 162(2):435-7. PubMed ID: 4236628
    [No Abstract]   [Full Text] [Related]  

  • 15. Supplementing glucose metabolism in human senile cataracts.
    Cheng HM; Chylack LT; von Saltza I
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):812-8. PubMed ID: 6458578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transglutaminase activity in normal human lenses and in senile cataracts.
    Hidasi V; Muszbek L
    Ann Clin Lab Sci; 1995; 25(3):236-40. PubMed ID: 7605105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolism of the lens crystalline and cataract].
    Offret G; Dhermy P
    J Fr Ophtalmol; 1988; 11(4):369-402. PubMed ID: 3049767
    [No Abstract]   [Full Text] [Related]  

  • 18. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H; Lou MF; Fernando MR; Harding JJ
    Mol Vis; 2006 Oct; 12():1153-9. PubMed ID: 17093401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSSG-reducing activity in lenses deficient in glucose-6-phosphate dehydrogenase.
    Cheng HM; Chylack LT; Sang CN; Orzalesi N; Corongiu FP
    Metab Pediatr Syst Ophthalmol; 1983; 7(1):53-7. PubMed ID: 6621360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transaminase activity of the normal human crystalline lens and of the cataractous lens].
    PONTE F; PANDOLFO L
    Boll Soc Ital Biol Sper; 1959 Feb; 35(3):142-3. PubMed ID: 13638423
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.