BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 5771164)

  • 21. Total lactate dehydrogenase and its isoenzyme pattern in lens, aqueous humour, and serum in cases of senile cataract.
    Nagpal RC; Singh RC; Singh GP; Ahluwalia BK
    Acta Ophthalmol (Copenh); 1991 Feb; 69(1):57-60. PubMed ID: 2028768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigations on trace elements in normal and senile cataractous lenses. Activation analysis of copper, zinc, manganese, cobalt, rubidium, scandium, and nickel.
    Rácz P; Ordögh M
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1977 Sep; 204(1):67-72. PubMed ID: 303483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Certain problems of ammonia metabolism in human crystalline lens under normal conditions and in different clinical stages of development of senile cataract].
    Murkelinskaia FG; Veksler IaI
    Vestn Oftalmol; 1975; (3):57-60. PubMed ID: 1154592
    [No Abstract]   [Full Text] [Related]  

  • 24. Concentrations of some ribonucleotides, L-lactate, and pyruvate in human senile cataractous lenses with special reference to anterior capsular/subcapsular opacity.
    Laursen AB
    Acta Ophthalmol (Copenh); 1976 Dec; 54(6):677-92. PubMed ID: 990018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The role of zinc in the appearance of cataract].
    Jeru I
    Oftalmologia; 1997; 41(4):329-32. PubMed ID: 9409986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasma membrane Ca-ATPase isoform expression in human cataractous lenses compared to age-matched clear lenses.
    Marian MJ; Mukhopadhyay P; Borchman D; Paterson CA
    Ophthalmic Res; 2008; 40(2):86-93. PubMed ID: 18223301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated Expression of indoleamine 2,3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats.
    Kanth VR; Lavanya K; Srinivas J; Raju TN
    Curr Eye Res; 2009 Apr; 34(4):274-81. PubMed ID: 19373575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Biochemical aspects in the pathogenesis of senile cataract].
    Jeru I; Boiştean V; Lupaşco V
    Oftalmologia; 1997; 41(3):207-8. PubMed ID: 9409962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Histochemical localization of acetylcholinesterase activity in normal rabbit crystalline lens and in human cataractous crystalline lens].
    Scuderi G; Delle Noci N; Sborgia C; Sborgia G
    Boll Soc Ital Biol Sper; 1974 Feb; 50(4):207-10. PubMed ID: 4447717
    [No Abstract]   [Full Text] [Related]  

  • 30. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium.
    Vasavada AR; Thampi P; Yadav S; Rawal UM
    Indian J Ophthalmol; 1993 Dec; 41(4):173-5. PubMed ID: 8005648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses.
    Garner B; Roberg K; Qian M; Eaton JW; Truscott RJ
    Exp Eye Res; 2000 Dec; 71(6):599-607. PubMed ID: 11095912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Chromatographic and chemical research on the lipid composition of the human cataractous crystalline lens].
    Nizzola GM; Mazzilli G; Mazza C
    Ann Ottalmol Clin Ocul; 1968 Oct; 94(10):1230-8. PubMed ID: 5733453
    [No Abstract]   [Full Text] [Related]  

  • 34. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts.
    Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H
    Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Blood constituents and senile cataract].
    Vîrgolici B; Popescu L
    Oftalmologia; 2006; 50(1):10-5. PubMed ID: 16773933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis.
    Takemoto LJ; Hansen JS
    Invest Ophthalmol Vis Sci; 1982 Mar; 22(3):336-42. PubMed ID: 7061206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein oxidation and lens opacity in humans.
    Boscia F; Grattagliano I; Vendemiale G; Micelli-Ferrari T; Altomare E
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2461-5. PubMed ID: 10937554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modifications of adenosine triphosphate and of some enzymatic activities during the development of human senile cataract.
    Maraini G; Santori M; Carta F
    Exp Eye Res; 1967 Apr; 6(2):126-9. PubMed ID: 6024065
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M; Takemoto LJ; Iwata S
    Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Human lens proteins in senile cataract].
    Golenda IL
    Vopr Med Khim; 1970; 16(5):498-502. PubMed ID: 5523765
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.