These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 5772963)

  • 1. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum.
    Benko PV; Wood TC; Segel IH
    Arch Biochem Biophys; 1969 Feb; 129(2):498-508. PubMed ID: 5772963
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of the general amino acid permease of Penicillium chrysogenum by transinhibition and turnover.
    Hunter DR; Segel IH
    Arch Biochem Biophys; 1973 Jan; 154(1):387-99. PubMed ID: 4632118
    [No Abstract]   [Full Text] [Related]  

  • 3. Acidic and basic amino acid transport systems of Penicillium chrysogenum.
    Hunter DR; Segel IH
    Arch Biochem Biophys; 1971 May; 144(1):168-83. PubMed ID: 5117525
    [No Abstract]   [Full Text] [Related]  

  • 4. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent regulation of cysteine and cystine transport in Penicillium chrysogenum.
    Skye GE; Segel IH
    Arch Biochem Biophys; 1970 May; 138(1):306-18. PubMed ID: 5446343
    [No Abstract]   [Full Text] [Related]  

  • 6. Repression of phenylacetic acid transport system in Penicillium chrysogenum Wis 54-1255 by free amino acids and ammonium salts.
    Martínez-Blanco H; Reglero A; Ferrero MA; Fernández-Cañón JM; Luengo JM
    J Antibiot (Tokyo); 1989 Sep; 42(9):1416-23. PubMed ID: 2507495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force.
    Hunter DR; Segel IH
    J Bacteriol; 1973 Mar; 113(3):1184-92. PubMed ID: 4632394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid transport in Neurospora crassa. I. Properties of two amino acid transport systems.
    Pall ML
    Biochim Biophys Acta; 1969 Jan; 173(1):113-27. PubMed ID: 4975665
    [No Abstract]   [Full Text] [Related]  

  • 9. Specificity and control of choline-O-sulfate transport in filamentous fungi.
    Bellenger N; Nissen P; Wood TC; Segel IH
    J Bacteriol; 1968 Nov; 96(5):1574-85. PubMed ID: 5726299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of L-aspartate transport in Neurospora crassa conidia.
    Wolfinbarger L; DeBusk AG
    Biochim Biophys Acta; 1972 Dec; 290(1):355-67. PubMed ID: 4264473
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease.
    Grenson M; Hou C; Crabeel M
    J Bacteriol; 1970 Sep; 103(3):770-7. PubMed ID: 5474888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organic nitrogen exigency of and effects of manganese on coremia production in Penicillium clavigerum and Penicillium claviforme.
    Tinnell WH; Jefferson BL; Benoit RE
    Can J Microbiol; 1974 Jan; 20(1):91-6. PubMed ID: 4822781
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of sulfate transport in neurospora by transinhibition and by inositol depletion.
    Marzluf GA
    Arch Biochem Biophys; 1973 May; 156(1):244-54. PubMed ID: 4730472
    [No Abstract]   [Full Text] [Related]  

  • 14. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi.
    Tweedie JW; Segel IH
    Biochim Biophys Acta; 1970 Jan; 196(1):95-106. PubMed ID: 5412251
    [No Abstract]   [Full Text] [Related]  

  • 15. Basic and neutral amino acid transport in Aspergillus nidulans.
    Piotrowska M; Stepień PP; Bartnik E; Zakrzewska E
    J Gen Microbiol; 1976 Jan; 92(1):89-96. PubMed ID: 1466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system.
    Gits JJ; Grenson M
    Biochim Biophys Acta; 1967 Jul; 135(3):507-16. PubMed ID: 6048820
    [No Abstract]   [Full Text] [Related]  

  • 17. ATP-sulfurylase from Penicillium chrysogenum. I. Purification and characterization.
    Tweedie JW; Segel IH
    Prep Biochem; 1971; 1(2):91-117. PubMed ID: 5005722
    [No Abstract]   [Full Text] [Related]  

  • 18. Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
    Hillenga DJ; Versantvoort HJ; Driessen AJ; Konings WN
    J Bacteriol; 1996 Jul; 178(14):3991-5. PubMed ID: 8763922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of protein synthesis and simulation of permease turnover in yeast.
    Grenson M; Crabeel M; Wiame JM; Béchet J
    Biochem Biophys Res Commun; 1968 Feb; 30(4):414-9. PubMed ID: 5637047
    [No Abstract]   [Full Text] [Related]  

  • 20. [Penicillin biosynthesis and amino acid metabolism in Penicillium chrysogenum in experiments with washed mycelium].
    Nikol'skiĭ LM; Levitov MM
    Antibiotiki; 1979 Nov; 24(11):803-8. PubMed ID: 41476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.