These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 5775914)

  • 1. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure.
    Tuttle JH; Dugan PR; Randles CI
    Appl Microbiol; 1969 Feb; 17(2):297-302. PubMed ID: 5775914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial dissimilatory sulfur cycle in acid mine water.
    Tuttle JH; Dugan PR; Macmillan CB; Randles CI
    J Bacteriol; 1969 Feb; 97(2):594-602. PubMed ID: 5773013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue.
    Phyo AK; Jia Y; Tan Q; Sun H; Liu Y; Dong B; Ruan R
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of mine water.
    Klein R; Tischler JS; Mühling M; Schlömann M
    Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.
    Li Y; Hu X; Ren B
    Water Sci Technol; 2016; 73(9):2039-51. PubMed ID: 27148704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive transport modeling of column experiments for the remediation of acid mine drainage.
    Amos RT; Mayer KU; Blowes DW; Ptacek CJ
    Environ Sci Technol; 2004 Jun; 38(11):3131-8. PubMed ID: 15224746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling.
    Shipp WG; Zierenberg RA
    Ecol Appl; 2008 Dec; 18(8 Suppl):A29-54. PubMed ID: 19475917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW).
    Rodrigues C; Núñez-Gómez D; Silveira DD; Lapolli FR; Lobo-Recio MA
    J Hazard Mater; 2019 Aug; 375():330-338. PubMed ID: 30826155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Managing pore-water quality in mine tailings by inducing microbial sulfate reduction.
    Lindsay MB; Blowes DW; Condon PD; Ptacek CJ
    Environ Sci Technol; 2009 Sep; 43(18):7086-91. PubMed ID: 19806746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.
    Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS
    Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid tolerance of an acid mine drainage bioremediation system based on biological sulfate reduction.
    Lu J; Chen T; Wu J; Wilson PC; Hao X; Qian J
    Bioresour Technol; 2011 Nov; 102(22):10401-6. PubMed ID: 21967711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction.
    Glombitza F
    Waste Manag; 2001; 21(2):197-203. PubMed ID: 11220185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor.
    Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ
    Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.
    Hulshof AH; Blowes DW; Gould WD
    Water Res; 2006 May; 40(9):1816-26. PubMed ID: 16626781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.
    Utgikar VP; Chen BY; Chaudhary N; Tabak HH; Haines JR; Govind R
    Environ Toxicol Chem; 2001 Dec; 20(12):2662-9. PubMed ID: 11764146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of adapting cellulose degrading microorganisms to 25 degrees C providing energy sources for biological sulphate removal.
    Greben H; Sigama J
    Water Sci Technol; 2009; 60(7):1711-9. PubMed ID: 19809134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients.
    Sun W; Xiao T; Sun M; Dong Y; Ning Z; Xiao E; Tang S; Li J
    Appl Environ Microbiol; 2015 Aug; 81(15):4874-84. PubMed ID: 25979900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments.
    Hedrich S; Schippers A
    Curr Issues Mol Biol; 2021; 40():25-48. PubMed ID: 32159522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate reduction at low pH to remediate acid mine drainage.
    Sánchez-Andrea I; Sanz JL; Bijmans MF; Stams AJ
    J Hazard Mater; 2014 Mar; 269():98-109. PubMed ID: 24444599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.