These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 5778277)

  • 1. An application of transient nuclear magnetic resonance methods to the measurement of biological exchange rates. The interaction of trifluoroacetyl-D-phenylalanine with the chymotrypsins.
    Sykes BD
    J Am Chem Soc; 1969 Feb; 91(4):949-55. PubMed ID: 5778277
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzyme--substrate interaction by nuclear magnetic resonance.
    Spotswood T; Evans JM; Richards JH
    J Am Chem Soc; 1967 Sep; 89(19):5052-4. PubMed ID: 6074810
    [No Abstract]   [Full Text] [Related]  

  • 3. Magnetic resonance studies of protein-small molecule interactions. Binding of N-trifluoroacetyl-D-(and L-)-p-fluorophenylalanine to -chymotrypsin.
    Gammon KL; Smallcombe SH; Richards JH
    J Am Chem Soc; 1972 Jun; 94(13):4573-80. PubMed ID: 5036166
    [No Abstract]   [Full Text] [Related]  

  • 4. Proton and fluorine nuclear magnetic resonance spectroscopic observation of hemiacetal formation between N-acyl-p-fluorophenylalaninals and alpha-chymotrypsin.
    Gorenstein DG; Shah DO
    Biochemistry; 1982 Sep; 21(19):4679-86. PubMed ID: 7138821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorine magnetic resonance studies of fluorine-substituted benzoyl chymotrypsins.
    Amshey JW; Bender ML
    Arch Biochem Biophys; 1983 Jul; 224(1):378-81. PubMed ID: 6870262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-inhibitor interactions studied via fluorine magnetic resonance. II. Model for the trifluoroacetylphenylalanine-alpha-chymotrypsin interaction.
    Zeffren E
    Arch Biochem Biophys; 1970 Mar; 137(1):291-3. PubMed ID: 5435065
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation.
    Paselk RA; Levy D
    Biochemistry; 1974 Jul; 13(16):3340-6. PubMed ID: 4841066
    [No Abstract]   [Full Text] [Related]  

  • 8. A NMR study of the interaction of N-trifluoroacetyl-D-phenylalanine with alpha-chymotrypsin.
    Sykes BD
    Biochem Biophys Res Commun; 1968 Dec; 33(5):727-32. PubMed ID: 5723335
    [No Abstract]   [Full Text] [Related]  

  • 9. Nuclear magnetic resonance studies of the interaction of N-trifluoroacetyltryptophanate with -chymotrypsin.
    Gerig JT; Rimerman RA
    J Am Chem Soc; 1972 Oct; 94(21):7558-64. PubMed ID: 5072869
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzyme-inhibitor interactions studies via fluorine nuclear magnetic resonance. I. The interaction of alpha-chymotrypsin with DL-N-trifluoroacetylphenylalanie.
    Zeffren E; Reavill RE
    Biochem Biophys Res Commun; 1968 Jul; 32(1):73-80. PubMed ID: 5672545
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for multiple forms of p-trifluoromethylbenzenesulfonyl-alpha-chymotrypsin.
    Ando ME; Gerig JT; Luk KF; Roe DC
    Can J Biochem; 1980 May; 58(5):427-33. PubMed ID: 7407679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proton-magnetic-resonance study of N-trifluoroacetyl-L-alanyl-L-phenylalaninal binding to alpha-chymotrypsin.
    Wyeth P; Sharma RP; Akhtar M
    Eur J Biochem; 1980 Apr; 105(3):581-5. PubMed ID: 6245886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for hemiacetal formation between N-acyl-L-phenylalaninals and alpha-chymotrypsin by cross-saturation nuclear magnetic resonance spectroscopy.
    Chen R; Gorenstein DG; Kennedy WP; Lowe G; Nurse D; Schultz RM
    Biochemistry; 1979 Mar; 18(5):921-6. PubMed ID: 420824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Adjustment of the substrate as rate-determining step in the enzymatic cleavage of esters and amides by chymotrypsin A].
    Fink G; Patat F
    Hoppe Seylers Z Physiol Chem; 1969 Dec; 350(12):1501-12. PubMed ID: 5363652
    [No Abstract]   [Full Text] [Related]  

  • 15. The structure of chymostatin, a chymotrypsin inhibitor.
    Tatsuta K; Mikami N; Fujimoto K; Umezawa S; Umezawa H
    J Antibiot (Tokyo); 1973 Nov; 26(11):625-46. PubMed ID: 4792111
    [No Abstract]   [Full Text] [Related]  

  • 16. Nuclear magnetic resonance studies of the interaction of N-formyltryptophanate with -chymotrypsin.
    Gerig JT; Rimerman RA
    J Am Chem Soc; 1972 Oct; 94(21):7549-58. PubMed ID: 5072868
    [No Abstract]   [Full Text] [Related]  

  • 17. Nuclear magnetic resonance studies of the interaction of N-acetyltryptophan with -chymotrypsin.
    Gerig JT; Rimerman RA
    J Am Chem Soc; 1972 Oct; 94(21):7565-9. PubMed ID: 5072870
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of histidine in the active center of chymotrypsins from a reptile and a fish.
    Barnard EA; Hope WC
    Biochim Biophys Acta; 1969 Apr; 178(2):364-9. PubMed ID: 5772410
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational dynamics in fluorophenylcarbamoyl-alpha-chymotrypsins.
    Kairi M; Gerig JT
    Biochim Biophys Acta; 1990 Jun; 1039(2):157-70. PubMed ID: 2364092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and stereospecificity of alpha-chymotrypsin.
    Ingles DW; Knowles JR
    Biochem J; 1967 Aug; 104(2):369-77. PubMed ID: 6048779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.