These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 5778316)

  • 1. Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica.
    McCann GD; Dill JC
    J Gen Physiol; 1969 Apr; 53(4):385-413. PubMed ID: 5778316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica.
    Bishop LG; Keehn DG; McCann GD
    J Neurophysiol; 1968 Jul; 31(4):509-25. PubMed ID: 5709868
    [No Abstract]   [Full Text] [Related]  

  • 3. [Microrecording in the optic tectum of unrestrained rabbits. An experimental contribution to the problem of visual perception of motion].
    Schaefer KP
    Arch Psychiatr Nervenkr (1970); 1966; 208(2):120-46. PubMed ID: 5338120
    [No Abstract]   [Full Text] [Related]  

  • 4. Visual system of calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli.
    Okamura JY; Strausfeld NJ
    J Comp Neurol; 2007 Jan; 500(1):189-208. PubMed ID: 17099892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Functional properties and localization of visual cells of the optic tectum in pigeons].
    Jassik-Gerschenfeld D; Guichard J
    J Physiol (Paris); 1971; 63(6):239A. PubMed ID: 5152262
    [No Abstract]   [Full Text] [Related]  

  • 6. Common circuit design in fly and mammalian motion vision.
    Borst A; Helmstaedter M
    Nat Neurosci; 2015 Aug; 18(8):1067-76. PubMed ID: 26120965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral response of single neurones recorded in the optic lobes of the housefly and blowfly.
    Bishop LG
    Nature; 1968 Sep; 219(5161):1372-3. PubMed ID: 5678020
    [No Abstract]   [Full Text] [Related]  

  • 8. Musca domestica lamina monopolar cell response to visual stimuli and their contribution to early motion detection.
    Popp LA; Tomberlin ES; Barrett SF; Wright CH
    Biomed Sci Instrum; 2007; 43():134-9. PubMed ID: 17487070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual motion sensitivity in descending neurons in the hoverfly.
    Nicholas S; Leibbrandt R; Nordström K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Mar; 206(2):149-163. PubMed ID: 31989217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of single cells in the superior colliculus of the cat to diffuse light and moving stimuli.
    Harutiunian-Kozak B; Kozak W; Dec K; Balcer E
    Acta Biol Exp (Warsz); 1968; 28(4):317-31. PubMed ID: 5732764
    [No Abstract]   [Full Text] [Related]  

  • 12. Neural Circuit to Integrate Opposing Motions in the Visual Field.
    Mauss AS; Pankova K; Arenz A; Nern A; Rubin GM; Borst A
    Cell; 2015 Jul; 162(2):351-362. PubMed ID: 26186189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster.
    Joesch M; Plett J; Borst A; Reiff DF
    Curr Biol; 2008 Mar; 18(5):368-74. PubMed ID: 18328703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of pop-out responses to luminance and motion contrasting stimuli of tectal neurons in pigeons.
    Niu X; Huang S; Yang S; Wang Z; Li Z; Shi L
    Brain Res; 2020 Nov; 1747():147068. PubMed ID: 32827547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear identification theory models for successive stages of visual nervous systems of flies.
    McCann GD
    J Neurophysiol; 1974 Sep; 37(5):869-95. PubMed ID: 4414838
    [No Abstract]   [Full Text] [Related]  

  • 16. Organization of optic lobes that support motion detection in a semiterrestrial crab.
    Sztarker J; Strausfeld NJ; Tomsic D
    J Comp Neurol; 2005 Dec; 493(3):396-411. PubMed ID: 16261533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual receptive fields in the superior colliculus of the cat.
    Sterling P; Wickelgren BG
    J Neurophysiol; 1969 Jan; 32(1):1-15. PubMed ID: 5765229
    [No Abstract]   [Full Text] [Related]  

  • 18. Receptive field properties of directionally selective units in the pigeon's optic tectum.
    Jassik-Gerschenfeld D; Minois F; Condé-Courtine F
    Brain Res; 1970 Dec; 24(3):407-21. PubMed ID: 5494531
    [No Abstract]   [Full Text] [Related]  

  • 19. Optic flow representation in the optic lobes of Diptera: modeling the role of T5 directional tuning properties.
    Douglass JK; Strausfeld NJ
    J Comp Physiol A; 2000 Sep; 186(9):783-97. PubMed ID: 11085633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics.
    Hausen K; Wehrhahn C
    J Neurosci; 1989 Nov; 9(11):3828-36. PubMed ID: 2585057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.