BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 5781578)

  • 1. Effects of some antitumor agents on growth and glycolytic enzymes of the flagellate Crithidia.
    Bacchi CJ; Ciaccio EI; Koren LE
    J Bacteriol; 1969 Apr; 98(1):23-8. PubMed ID: 5781578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of trypanocidal drugs on terminal respiration of Crithidia fasciculata.
    Hill GC; Hutner SH
    Exp Parasitol; 1968 Apr; 22(2):207-12. PubMed ID: 4231492
    [No Abstract]   [Full Text] [Related]  

  • 3. Crithidia fasciculata: acriflavine-induced changes in soluble enzyme levels.
    Bacchi CJ; Hill GC
    Exp Parasitol; 1972 Apr; 31(2):290-8. PubMed ID: 4401438
    [No Abstract]   [Full Text] [Related]  

  • 4. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals.
    Mottram JC; Coombs GH
    Exp Parasitol; 1985 Apr; 59(2):151-60. PubMed ID: 2982638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leishmania major and Leishmania tropica: II. Effect of an immunomodulator, S(2) complex on the enzymes of the parasites.
    Al-Mulla Hummadi YM; Al-Bashir NM; Najim RA
    Exp Parasitol; 2006 Feb; 112(2):85-91. PubMed ID: 16274690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ethidium bromide on the oxidative metabolism and enzyme profiles of Crithidia fasciculata.
    Manaia AC; Roitman I
    J Protozool; 1977 Feb; 24(1):192-5. PubMed ID: 864623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and regulatory properties of the NADP-linked malic enzyme for Crithidia fasciculata.
    Orellano E; Cazzulo JJ
    Mol Biochem Parasitol; 1981 May; 3(1):1-11. PubMed ID: 7019702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experiments on the inhibition of glycolytic enzymes by diisopropylfluroophosphate].
    Domagk GF; Sörensen N; Zech R
    Hoppe Seylers Z Physiol Chem; 1967 Apr; 348(4):381-4. PubMed ID: 4231654
    [No Abstract]   [Full Text] [Related]  

  • 9. [Protein structure and enzyme activity. 3. Suppressibility by pyridoxal-5-phosphate of glucose-6-phosphate dehydrogenase and other enzymes of carbohydrate metabolism].
    Domschke W; Domagk GF
    Hoppe Seylers Z Physiol Chem; 1969 Sep; 350(9):1111-6. PubMed ID: 4242507
    [No Abstract]   [Full Text] [Related]  

  • 10. The mechanism behind the antileishmanial effect of zinc sulphate. II. Effects on the enzymes of the parasites.
    Al-Mulla Hummadi YM; Al-Bashir NM; Najim RA
    Ann Trop Med Parasitol; 2005 Mar; 99(2):131-9. PubMed ID: 15814032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Content, synthesis, and function of polyamines in trypanosomatids: relationship to chemotherapy.
    Bacchi CJ
    J Protozool; 1981 Feb; 28(1):20-7. PubMed ID: 6788943
    [No Abstract]   [Full Text] [Related]  

  • 12. Biochemical properties of trypanosomatid lactate dehydrogenases.
    Bacchi CJ; Ciaccio EI; O'Connell KM; Hutner SH
    J Bacteriol; 1970 Jun; 102(3):826-34. PubMed ID: 5464273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [RESPIRATORY AND GLYCOLYTIC ENZYMES IN STAPHYLOCOCCUS AUREUS].
    PALKINA NA; GERSHALOVICH VN
    Mikrobiologiia; 1964; 33():777-82. PubMed ID: 14267384
    [No Abstract]   [Full Text] [Related]  

  • 14. Five trypanosomatid species of insects distinguished by isoenzymes.
    Goncalves de Lima VM; Roitman I; Kilgour V
    J Protozool; 1979 Nov; 26(4):648-52. PubMed ID: 161788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action of w-chloroacetophenon on several enzymes.
    Castro JA
    Enzymologia; 1966 Jan; 30(1):49-56. PubMed ID: 4987695
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in enzymatic activities involved in glucose metabolism by acyl-CoAs in Trypanosoma cruzi.
    García de Lema M; Lucchesi G; Racagni G; Machado-Domenech EE
    Can J Microbiol; 2001 Jan; 47(1):49-54. PubMed ID: 15049449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of growth and purine-metabolizing enzymes of trypanosomid flagellates by N6-methyladenine.
    Nolan LL; Kidder GW
    Antimicrob Agents Chemother; 1980 Apr; 17(4):567-71. PubMed ID: 6994636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular distribution of carbon dioxide-fixing enzymes in Trypanosoma cruzi and Crithidia fasciculata.
    Cazzulo JJ; Valle E; Docampo R; Cannata JJ
    J Gen Microbiol; 1980 Mar; 117(1):271-4. PubMed ID: 6993627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrates of hexokinase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase prevent the inhibitory response induced by ascorbic acid/iron and dehydroascorbic acid in rabbit erythrocytes.
    Fiorani M; De Sanctis R; Scarlatti F; Stocchi V
    Arch Biochem Biophys; 1998 Aug; 356(2):159-66. PubMed ID: 9705206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsubstituted agarose as an affinity matrix for isolation of NAD-dependent alpha-glycerophosphate dehydrogenase from the trypanosomatid Crithidia fasciculata.
    Bacchi CJ; Marcus SL; Lambros C; Goldberg B; Messina L; Hutner SH
    Biochem Biophys Res Commun; 1974 Jun; 58(3):778-86. PubMed ID: 4365735
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.