These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 5782245)

  • 1. The conservation of oxidative energy in phosphate-free systems. Formation of acyl anhydrides via the oxidation of hydroquinone monocarboxylic esters.
    Thanassi JW; Cohen LA
    Biochim Biophys Acta; 1969 Apr; 172(3):389-98. PubMed ID: 5782245
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydroquinone monophosphates and oxidative phosphorylation.
    GRUBER W; HOHL R; WIELAND T
    Biochem Biophys Res Commun; 1963 Jul; 12():242-6. PubMed ID: 13950882
    [No Abstract]   [Full Text] [Related]  

  • 3. The nonenzymatic conversion of tyrosine into mono- and dihydroxyindoles.
    Wilchek M; Spande T; Milne G; Witkop B
    Biochemistry; 1968 May; 7(5):1777-86. PubMed ID: 5650380
    [No Abstract]   [Full Text] [Related]  

  • 4. Water structure and the chaotropic properties of haloacetates.
    Hanstein WG; Davis KA; Hatefi Y
    Arch Biochem Biophys; 1971 Dec; 147(2):534-44. PubMed ID: 4332721
    [No Abstract]   [Full Text] [Related]  

  • 5. THE PHOSPHORYLATION REACTION THAT ACCOMPANIES THE NONENZYMIC OXIDATION OF 2-METHYL-1,4-NAPHTHOHYDROQUINONE DIPHOSPHATE.
    TOMASI GE; DALLAM D
    J Biol Chem; 1964 May; 239():1604-13. PubMed ID: 14197010
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction of N-bromosuccinimide with reduced ring systems. Apparent protection of glutamate dehydrogenase by reduced nicotinamide-adenine dinucleotide.
    Summers MR
    Biochemistry; 1972 Aug; 11(16):3088-90. PubMed ID: 4339477
    [No Abstract]   [Full Text] [Related]  

  • 7. THE OXIDATIVE CONVERSION OF HYDROQUINONE MONOPHOSPHATES TO QUINONE KETALS.
    DUERCKHEIMER W; COHEN LA
    Biochemistry; 1964 Dec; 3():1948-52. PubMed ID: 14269316
    [No Abstract]   [Full Text] [Related]  

  • 8. OXIDATIVE DEGRADATION OF IMIDAZOLES BY BROMINE OR N-BROMOSUCCINIMIDE.
    SCHMIR GL; COHEN LA
    Biochemistry; 1965 Mar; 4():533-8. PubMed ID: 14311626
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermodynamic relationships in mitochondrial oxidative phosphorylation.
    Wilson DF; EreciƄska M; Dutton PL
    Annu Rev Biophys Bioeng; 1974; 3(0):203-30. PubMed ID: 4153883
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative fragmentation of 9-aminomethylacridan.
    Digenis GA; Whitlock HW
    J Pharm Sci; 1972 Feb; 61(2):206-10. PubMed ID: 5059783
    [No Abstract]   [Full Text] [Related]  

  • 11. Reactions of 4-methoxy-2-oxopyran-6-ylacetic acid with acid anhydrides.
    Yamamura S; Kato K; Hirata Y
    J Chem Soc Perkin 1; 1969; 18():2461-4. PubMed ID: 5391293
    [No Abstract]   [Full Text] [Related]  

  • 12. Semiquinone phosphate: an oxidation intermediate of quinol phosphates.
    BOND A; MASON HS
    Biochem Biophys Res Commun; 1962 Dec; 9():574-7. PubMed ID: 13968725
    [No Abstract]   [Full Text] [Related]  

  • 13. [New antibiotics, juglomycin. 2. Structure of juglomycin A and B].
    Tanaka N; Ogata H; Ushiyama K; Ono H
    Jpn J Antibiot; 1971 Oct; 24(5):222-4. PubMed ID: 5316819
    [No Abstract]   [Full Text] [Related]  

  • 14. [Conversion of p-quinols into analogous aromatic amines with pyridoxamine and pyridoxamine-5-phosphate].
    Dannenberg H; Iglesias JM
    Hoppe Seylers Z Physiol Chem; 1968 Sep; 349(9):1077-84. PubMed ID: 5706134
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetics and mechanisms of lactonization of coumarinic acids and hydrolysis of coumarins. II.
    Lippold BC; Garrett ER
    J Pharm Sci; 1971 Jul; 60(7):1019-27. PubMed ID: 5115240
    [No Abstract]   [Full Text] [Related]  

  • 16. [Reaction of 4-acylhomophthalic acid anhydrides to isocoumarin-4-carboxylic acid derivatives. 6. On acyl derivatives of methylene active dicarbonyl compounds].
    Schnekenburger J
    Arch Pharm Ber Dtsch Pharm Ges; 1965 Oct; 298(10):715-22. PubMed ID: 5222296
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermodynamics of oxidation-reduction reactions and its application to bioenergetics.
    Walz D
    Biochim Biophys Acta; 1979 Mar; 505(3-4):279-353. PubMed ID: 219888
    [No Abstract]   [Full Text] [Related]  

  • 18. [Chemical properties of the osazones of L-dehydroascorbic acid and 2,3-diketo-L-gulonic acid and their isomers isolated on a thin layer of silica gel].
    Zloch Z
    Int J Vitam Nutr Res; 1971; 41(1):99-103. PubMed ID: 5125381
    [No Abstract]   [Full Text] [Related]  

  • 19. The mechanism of oxidative gelation of a glycoprotein from wheat flour. Evidence from a model system based upon caffeic acid.
    Painter TJ; Neukom H
    Biochim Biophys Acta; 1968 Jun; 158(3):363-81. PubMed ID: 5660102
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.
    Ramsden CA; Riley PA
    Bioorg Med Chem Lett; 2014 Jun; 24(11):2463-4. PubMed ID: 24767847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.