These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 5784205)

  • 1. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media.
    Wehr CT; Parks LW
    J Bacteriol; 1969 May; 98(2):458-66. PubMed ID: 5784205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of ribonucleic acid synthesis on continuous protein synthesis in yeast.
    Roth RM; Dampier C
    J Bacteriol; 1972 Feb; 109(2):773-9. PubMed ID: 4550820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of putative deoxyribonucleic acid inhibitors on macromolecular synthesis in Saccharomyces cerevisiae.
    Wehr CT; Kudrna RD; Parks LW
    J Bacteriol; 1970 Jun; 102(3):636-41. PubMed ID: 4246878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA, RNA , and protein synthesis in erythrocytic forms of Plasmodium knowlesi.
    Polet H; Barr CF
    Am J Trop Med Hyg; 1968 Sep; 17(5):672-9. PubMed ID: 4971014
    [No Abstract]   [Full Text] [Related]  

  • 5. Macromolecule synthesis in yeast spheroplasts.
    Hutchison HT; Hartwell LH
    J Bacteriol; 1967 Nov; 94(5):1697-705. PubMed ID: 6066050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular synthesis during the germanation of Saccharomyces cerevisiae spores.
    Rousseau P; Halvorson HO
    J Bacteriol; 1973 Mar; 113(3):1289-95. PubMed ID: 4570780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on microbial ribonucleic acid. VI. Appearance of methyl-deficient transfer ribonucleic acid during logarithmic growth of Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1968 Sep; 96(3):760-7. PubMed ID: 5732508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl-deficient transfer ribonucleic acid and macromolecular synthesis in methionine-starved Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1969 Nov; 100(2):679-86. PubMed ID: 5354939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of action of lomofungin.
    Gottlieb D; Nicolas G
    Appl Microbiol; 1969 Jul; 18(1):35-40. PubMed ID: 5803629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetate utilization and macromolecular synthesis during sporulation of yeast.
    Esposito MS; Esposito RE; Arnaud M; Halvorson HO
    J Bacteriol; 1969 Oct; 100(1):180-6. PubMed ID: 5344095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appearance of a new species of ribonucleic acid during sporulation in Saccharomyces cerevisiae.
    Kadowaki K; Halvorson HO
    J Bacteriol; 1971 Mar; 105(3):826-30. PubMed ID: 5547990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,4-Dinitrophenol and azide as inhibitors of protein and ribonucleic acid synthesis in anaerobic yeast.
    Jarett L; Hendler RW
    Biochemistry; 1967 Jun; 6(6):1693-703. PubMed ID: 6035912
    [No Abstract]   [Full Text] [Related]  

  • 13. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae.
    Knudsen RC; Moore K; Yall I
    J Bacteriol; 1969 May; 98(2):629-36. PubMed ID: 5784216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecule synthesis in temperature-sensitive mutants of yeast.
    Hartwell LH
    J Bacteriol; 1967 May; 93(5):1662-70. PubMed ID: 5337848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 5-fluorouracil and 6-azauracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis.
    de Kloet SR
    Biochem J; 1968 Jan; 106(1):167-78. PubMed ID: 5756480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The regulation of RNA synthesis in yeast II: Amino acids shift-up experiments.
    Ludwig JR; Oliver SG; McLaughlin CS
    Mol Gen Genet; 1977 Dec; 158(2):117-22. PubMed ID: 340932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae.
    Hartwell LH
    J Bacteriol; 1973 Sep; 115(3):966-74. PubMed ID: 4580573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular content of ribonucleic acid and protein in Saccharomyces cerevisiae as a function of exponential growth rate: calculation of the apparent peptide chain elongation rate.
    Boehlke KW; Friesen JD
    J Bacteriol; 1975 Feb; 121(2):429-33. PubMed ID: 1089627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Phillips JH
    J Bacteriol; 1969 Nov; 100(2):695-700. PubMed ID: 5354941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The control of ribonucleic acid synthesis in bacteria. Polymerization rates for ribonucleic acids in amino acid-starved relaxed and stringent auxotrophs of Escherichia coli.
    Gray WJ; Vickers TG; Midgley JE
    Biochem J; 1972 Aug; 128(5):1021-31. PubMed ID: 4566192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.