These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 5784213)

  • 21. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae.
    Cavero S; Vozza A; del Arco A; Palmieri L; Villa A; Blanco E; Runswick MJ; Walker JE; Cerdán S; Palmieri F; Satrústegui J
    Mol Microbiol; 2003 Nov; 50(4):1257-69. PubMed ID: 14622413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control.
    Messenguy F; Colin D; ten Have JP
    Eur J Biochem; 1980 Jul; 108(2):439-47. PubMed ID: 6997042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ageing on tissue levels of amino acids involved in the nitric oxide pathway in rat brain.
    Strolin Benedetti M; Dostert P; Marrari P; Cini M
    J Neural Transm Gen Sect; 1993; 94(1):21-30. PubMed ID: 7510498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NUTRITIONAL FACTORS RELATING TO GROWTH AND OXYTETRACYCLINE FORMATION BY STREPTOMYCES RIMOSUS.
    ZYGMUNT WA
    Can J Microbiol; 1964 Jun; 10():389-95. PubMed ID: 14187008
    [No Abstract]   [Full Text] [Related]  

  • 25. Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae.
    Kitamoto K; Yoshizawa K; Ohsumi Y; Anraku Y
    J Bacteriol; 1988 Jun; 170(6):2683-6. PubMed ID: 3131304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Compartmentalization of metabolism of spatially-delimiting amino acid pools of yeast cells].
    Davidova EG; Belov AP; Rachinskiĭ VV
    Biokhimiia; 1983 Aug; 48(8):1241-8. PubMed ID: 6138102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids.
    Benjamin AM; Quastel JH
    Biochem J; 1972 Jul; 128(3):631-46. PubMed ID: 4634833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoration of aerial mycelium and antibiotic production in a Streptomyces griseoflavus arginine auxotroph.
    Ochi K; Saito Y; Umehara K; Ueda I; Kohsaka M
    J Gen Microbiol; 1984 Aug; 130(8):2007-13. PubMed ID: 6470674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells.
    Baydoun AR; Emery PW; Pearson JD; Mann GE
    Biochem Biophys Res Commun; 1990 Dec; 173(3):940-8. PubMed ID: 2268354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absorption of some amino acids by the haemoflagellate, Trypanosoma gambiense.
    Southworth GC; Read CP
    Comp Biochem Physiol A Comp Physiol; 1972 Apr; 41(4):905-11. PubMed ID: 4402093
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of vitamin C depletion on the free amino acid content in blood plasma of the guinea pig.
    Hornig D; Weber F; Wiss O
    Int J Vitam Nutr Res; 1971; 41(1):86-9. PubMed ID: 5125379
    [No Abstract]   [Full Text] [Related]  

  • 32. Uptake of a mixture of amino acids by mouse blastocysts.
    Lamb VK; Leese HJ
    J Reprod Fertil; 1994 Sep; 102(1):169-75. PubMed ID: 7799310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-α-cell axis in female mice.
    Galsgaard KD; Jepsen SL; Kjeldsen SAS; Pedersen J; Wewer Albrechtsen NJ; Holst JJ
    Am J Physiol Endocrinol Metab; 2020 Jun; 318(6):E920-E929. PubMed ID: 32255678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis.
    Garber AJ; Karl IE; Kipnis DM
    J Biol Chem; 1976 Feb; 251(3):836-43. PubMed ID: 1249059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of amino acids on the growth of Bacteroides melaninogenicus.
    Miles DO; Dyer JK; Wong JC
    J Bacteriol; 1976 Aug; 127(2):899-903. PubMed ID: 8425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth characteristics of Saccharomyces cerevisiae and Aspergillus nidulans when biotin is replaced by aspartic and fatty acids.
    Adler JH; Gealt MA; Nes WD; Nes WR
    J Gen Microbiol; 1981 Jan; 122(1):101-7. PubMed ID: 7033444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acids, amino sugars and sugars present in the cell wall of some strains of Streptococcus pyogenes.
    MICHEL MF; GOODER H
    J Gen Microbiol; 1962 Oct; 29():199-205. PubMed ID: 13935500
    [No Abstract]   [Full Text] [Related]  

  • 39. The sodium effect of Bacillus subtilis growth on aspartate.
    Whiteman P; Marks C; Freese E
    J Gen Microbiol; 1980 Aug; 119(2):493-504. PubMed ID: 6785382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular free amino acid concentration in human muscle tissue.
    Bergström J; Fürst P; Norée LO; Vinnars E
    J Appl Physiol; 1974 Jun; 36(6):693-7. PubMed ID: 4829908
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.