These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5784951)

  • 1. Beta-cyanoalanine, product of cyanide fixation and intermediate in asparagine biosynthesis in certain species of Lathyrus and Vicia.
    Ressler C; Giza YH; Nigam SN
    J Am Chem Soc; 1969 May; 91(10):2766-75. PubMed ID: 5784951
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of asparagine from beta-L-[4C-15N]cyanoalanine in Lathyrus sylvestris W. seedlings. Origin of the amide nitrogen.
    Ressler C; Nagarajan GR; Lauinger C
    Biochim Biophys Acta; 1969 Sep; 184(3):578-82. PubMed ID: 5821021
    [No Abstract]   [Full Text] [Related]  

  • 3. Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine.
    Blumenthal SG; Hendrickson HR; Abrol YP; Conn EE
    J Biol Chem; 1968 Oct; 243(20):5302-7. PubMed ID: 4302784
    [No Abstract]   [Full Text] [Related]  

  • 4. Asparagine biosynthesis by cotton roots. Carbon dioxide fixation and cyanide incorporation.
    Ting IP; Zschoche WC
    Plant Physiol; 1970 Apr; 45(4):429-34. PubMed ID: 5427112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BIOSYNTHESIS IN VICIA SATIVA (COMMON VETCH) OF GAMMA-GLUTAMYL-BETA-CYANOALANINE FROM (BETA-14-C)SERINE AND ITS RELATION TO CYANIDE METABOLISM.
    NIGAM SN; RESSLER C
    Biochim Biophys Acta; 1964 Nov; 93():339-45. PubMed ID: 14254031
    [No Abstract]   [Full Text] [Related]  

  • 6. Incorporation of serine-U-14C into beta-cyanoalanine and gamma-glutamyl-beta-cyanoalanine in Vicia sativa.
    Nigam SN; McConnell WB
    Can J Biochem; 1968 Oct; 46(10):1327-9. PubMed ID: 5701234
    [No Abstract]   [Full Text] [Related]  

  • 7. Detoxification of cyanide by plants and hormone action.
    Manning K
    Ciba Found Symp; 1988; 140():92-110. PubMed ID: 3073064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyanide metabolism by Bacillus megaterium.
    Castric PA; Strobel GA
    J Biol Chem; 1969 Aug; 244(15):4089-94. PubMed ID: 4979237
    [No Abstract]   [Full Text] [Related]  

  • 9. The β-cyanoalanine synthase pathway: beyond cyanide detoxification.
    Machingura M; Salomon E; Jez JM; Ebbs SD
    Plant Cell Environ; 2016 Oct; 39(10):2329-41. PubMed ID: 27116378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NEUROTOXIC AMINO ACIDS OF CERTAIN SPECIES OF LATHYRUS AND VETCH.
    RESSLER C
    Fed Proc; 1964; 23():1350-3. PubMed ID: 14236147
    [No Abstract]   [Full Text] [Related]  

  • 11. [Role of beta-cyanoalanine hydratase in the synthesis of asparagine in white lupine].
    Galoian SM; Tolosa EA; Goriachenkova EV
    Biokhimiia; 1982 Dec; 47(12):1949-53. PubMed ID: 7159621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.
    O'Leary B; Preston GM; Sweetlove LJ
    Mol Plant; 2014 Jan; 7(1):231-43. PubMed ID: 23825089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog.
    Piotrowski M; Volmer JJ
    Plant Mol Biol; 2006 May; 61(1-2):111-22. PubMed ID: 16786295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro studies on asparagine biosynthesis in soybean seedlings.
    Streeter JG
    Arch Biochem Biophys; 1973 Aug; 157(2):613-24. PubMed ID: 4738382
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae.
    Daneshian L; Renggli I; Hanaway R; Offermann LR; Schlachter CR; Hernandez Arriaza R; Henry S; Prakash R; Wybouw N; Dermauw W; Shimizu LS; Van Leeuwen T; Makris TM; Grbic V; Grbic M; Chruszcz M
    Insect Biochem Mol Biol; 2022 Mar; 142():103722. PubMed ID: 35063675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-cyanoalanine formation by Chromobacterium violaceum.
    Brysk MM; Corpe WA; Hankes LV
    J Bacteriol; 1969 Jan; 97(1):322-7. PubMed ID: 5764335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanide metabolism in higher plants. V. The formation of asparagine from -cyanoalanine.
    Castric PA; Farnden KJ; Conn EE
    Arch Biochem Biophys; 1972 Sep; 152(1):62-9. PubMed ID: 4627358
    [No Abstract]   [Full Text] [Related]  

  • 18. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on asparagine synthesis and utilization in seedlings.
    Lees EM; Farnden KJ; Elliott WH
    Arch Biochem Biophys; 1968 Aug; 126(2):539-46. PubMed ID: 5672512
    [No Abstract]   [Full Text] [Related]  

  • 20. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.
    Peiser GD; Wang TT; Hoffman NE; Yang SF; Liu HW; Walsh CT
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3059-63. PubMed ID: 16593463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.