BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 5785213)

  • 1. The biochemistry of long-chain, nonisoprenoid hydrocarbons. 3. The metabolic relationship of long-chain fatty acids and hydrocarbons and other aspects of hydrocarbon metabolism in Sarcina lutea.
    Albro PW; Dittmer JC
    Biochemistry; 1969 May; 8(5):1913-8. PubMed ID: 5785213
    [No Abstract]   [Full Text] [Related]  

  • 2. The biochemistry of long-chain, nonisoprenoid hydrocarbonss. II. The incorporation of acetate and the aliphatic chains of isoleucine and valine into fatty acids and hydrocarbon by Sarcina lutea in vivo.
    Albro PW; Dittmer JC
    Biochemistry; 1969 Mar; 8(3):953-9. PubMed ID: 5781029
    [No Abstract]   [Full Text] [Related]  

  • 3. Intermediate steps in the incorporation of fatty acids into long-chain, nonisoprenoid hydrocarbons by lysates of Sarcina lutea.
    Albro PW; Meehan TD; Dittmer JC
    Biochemistry; 1970 Apr; 9(9):1893-8. PubMed ID: 5445330
    [No Abstract]   [Full Text] [Related]  

  • 4. The biochemistry of long-chain, nonisoprenoid hydrocarbons. IV. Characteristics of synthesis by a cell-free preparation of Sarcina lutea.
    Albro PW; Dittmer JC
    Biochemistry; 1969 Aug; 8(8):3317-24. PubMed ID: 4390164
    [No Abstract]   [Full Text] [Related]  

  • 5. The biochemistry of long-chain, nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis.
    Albro PW; Dittmer JC
    Biochemistry; 1969 Jan; 8(1):394-404. PubMed ID: 5777337
    [No Abstract]   [Full Text] [Related]  

  • 6. 14-C incorporation into the fatty acids and aliphatic hydrocarbons of Sarcina lutea.
    Tornabene TG; Oró J
    J Bacteriol; 1967 Aug; 94(2):349-58. PubMed ID: 6039358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial hydrocarbons: occurrence, structure and metabolism.
    Albro PW; Dittmer JC
    Lipids; 1970 Mar; 5(3):320-5. PubMed ID: 4985817
    [No Abstract]   [Full Text] [Related]  

  • 8. [Hydrocarbon biosynthesis by microorganisms].
    Dediukhina EG; Eroshin VK
    Usp Sovrem Biol; 1973; 76(3):351-62. PubMed ID: 4593530
    [No Abstract]   [Full Text] [Related]  

  • 9. Hydrocarbon synthesis in the American cockroach.
    Nelson DR
    Nature; 1969 Mar; 221(5183):854-5. PubMed ID: 5765059
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthetic relationships among very long chain hydrocarbons, ketones, and secondary alcohols and the noninvolvement of alkenyl glyceryl ethers in their biosynthesis.
    Kolattukudy PE
    Arch Biochem Biophys; 1970 Nov; 141(1):381-3. PubMed ID: 5480122
    [No Abstract]   [Full Text] [Related]  

  • 11. Hydrocarbons in the millipede Graphidostreptus tumuliporus (Karsch) (Myriapoda: Diplopoda). I. In vivo incorporation of 14 C-labelled precursors into the hydrocarbon fraction.
    Oudejans RC
    Comp Biochem Physiol B; 1972 May; 42(1):15-22. PubMed ID: 5075765
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of long-chain fatty acid activation by -bromopalmitate and phytanate.
    Pande SV; Siddiqui AW; Gattereau A
    Biochim Biophys Acta; 1971 Nov; 248(2):156-66. PubMed ID: 5130448
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing filamentous fungi.
    Cerniglia CE; Perry JJ
    J Bacteriol; 1974 Jun; 118(3):844-7. PubMed ID: 4829928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A study of the effect of the nature of the carbon source in nutrient medium on the composition of fatty acids of lipids of Candida tropicalis and Candida intermedia].
    Alimova EK; Astvatsatur'ian AT; Serebrennikova AG
    Ukr Biokhim Zh; 1968; 40(1):79-82. PubMed ID: 5700113
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial subterminal oxidation of alkanes and alk-1-enes.
    Allen JE; Forney FW; Markovetz AJ
    Lipids; 1971 Jul; 6(7):448-52. PubMed ID: 5001027
    [No Abstract]   [Full Text] [Related]  

  • 16. Reduction in peroxide values and monocarbonyls of oxidized methyl oleate by several microbial cultures.
    Lilly HD; Smith JL; Alford JA
    Can J Microbiol; 1970 Sep; 16(9):855-8. PubMed ID: 4990156
    [No Abstract]   [Full Text] [Related]  

  • 17. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway.
    Sorigué D; Légeret B; Cuiné S; Morales P; Mirabella B; Guédeney G; Li-Beisson Y; Jetter R; Peltier G; Beisson F
    Plant Physiol; 2016 Aug; 171(4):2393-405. PubMed ID: 27288359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid uptake by the brain. 3. Incorporation of (1-14C)oleic acid into the adult rat brain.
    Dhopeshwarkar GA; Mead JF
    Biochim Biophys Acta; 1970 Jul; 210(2):250-6. PubMed ID: 5476259
    [No Abstract]   [Full Text] [Related]  

  • 19. Incorporation of [I-14C] acetate into the fatty acids of the developing rat brain.
    Dhopeshwarkar GA; Maier R; Mead JF
    Biochim Biophys Acta; 1969 Jul; 187(1):6-12. PubMed ID: 5811216
    [No Abstract]   [Full Text] [Related]  

  • 20. [Renewal of fatty acids in mouse tissues].
    Eichenberger-Favarger C; Favarger P
    Helv Physiol Pharmacol Acta; 1968; 26(3):315-24. PubMed ID: 5719351
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.