These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 5785950)

  • 1. Role of alcoholic intermediates in formation of isomeric ketones from n-hexadecane by a soil Arthrobacter.
    Klein DA; Henning FA
    Appl Microbiol; 1969 May; 17(5):676-81. PubMed ID: 5785950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural effects on Arthrobacter methylene hydroxylase activity.
    Hayasaka S; Klein DA
    J Bacteriol; 1971 Dec; 108(3):1141-6. PubMed ID: 5139534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria.
    Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N
    Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of n-alkanes to ketones by an Arthrobacter species.
    Klein DA; Davis JA; Casida LE
    Antonie Van Leeuwenhoek; 1968; 34(4):495-503. PubMed ID: 5304023
    [No Abstract]   [Full Text] [Related]  

  • 5. [Formation of primary alcohols and palmitic acid in the microbiological oxidation of hexadecane].
    Berezin IV; Bonartseva GN; Ol'sinskaia NL; Vorob'eva LI; Ergorov NS
    Prikl Biokhim Mikrobiol; 1975; 11(5):653-6. PubMed ID: 1187568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation of squalene by Arthrobacter species.
    Yamada Y; Motoi H; Kinoshita S; Takada N; Okada H
    Appl Microbiol; 1975 Mar; 29(3):400-4. PubMed ID: 1115507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35.
    Radwan SS; Sorkhoh NA; Felzmann H; El-Desouky AF
    J Appl Bacteriol; 1996 Apr; 80(4):370-4. PubMed ID: 8849639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subterminal oxidation of n-alkanes in achlorophyllous alga Prototheca sp.
    Sakuradani E; Natsume Y; Takimura Y; Ogawa J; Shimizu S
    J Biosci Bioeng; 2013 Oct; 116(4):472-4. PubMed ID: 23651808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1017-24. PubMed ID: 2933391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1011-6. PubMed ID: 4066609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evidence for biosynthetic relationships among hydrocarbons, secondary alcohols and ketones in Brassica oleracea.
    Kolattukudy PE; Liu TY
    Biochem Biophys Res Commun; 1970 Dec; 41(6):1369-74. PubMed ID: 5487866
    [No Abstract]   [Full Text] [Related]  

  • 12. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells.
    Kohler HP; Kohler-Staub D; Focht DD
    Appl Environ Microbiol; 1988 Aug; 54(8):1940-5. PubMed ID: 3140725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
    LUKINS HB; FOSTER JW
    J Bacteriol; 1963 May; 85(5):1074-87. PubMed ID: 14043998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of microorganisms producing cold-active oxidoreductases to be applied in enantioselective alcohol oxidation. An Antarctic survey.
    Araújo LS; Kagohara E; Garcia TP; Pellizari VH; Andrade LH
    Mar Drugs; 2011; 9(5):889-905. PubMed ID: 21673897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid composition of Arthrobacter Simplex grown on hydrocarbons. Occurrence of -hydroxy-fatty acids.
    Yano I; Furukawa Y; Kusunose M
    Eur J Biochem; 1971 Nov; 23(2):220-8. PubMed ID: 5156370
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidation of alkanes to internal monoalkenes by a Nocardia.
    Abbott BJ; Casida LE
    J Bacteriol; 1968 Oct; 96(4):925-30. PubMed ID: 5686017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for "aminoacetone synthase".
    McGilvray D; Morris JG
    Biochem J; 1969 May; 112(5):657-71. PubMed ID: 5821726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Products of the oxidation of n-decane by Pseudomonas aeruginosa and Mycobacterium rhodochrous.
    Fredricks KM
    Antonie Van Leeuwenhoek; 1967; 33(1):41-8. PubMed ID: 4961926
    [No Abstract]   [Full Text] [Related]  

  • 20. Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C(2) to C(4)n-Alkane-Grown Bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N; Barist I
    Appl Environ Microbiol; 1983 Jul; 46(1):178-84. PubMed ID: 16346339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.