These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 5785957)

  • 1. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets.
    Slyter LL; Weaver JM
    Appl Microbiol; 1969 May; 17(5):737-41. PubMed ID: 5785957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile fatty acid requirements of cellulolytic rumen bacteria.
    Dehority BA; Scott HW; Kowaluk P
    J Bacteriol; 1967 Sep; 94(3):537-43. PubMed ID: 6068143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.
    Slyter LL; Weaver JM
    Appl Environ Microbiol; 1977 Feb; 33(2):363-9. PubMed ID: 557955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VITAMIN REQUIREMENTS OF SEVERAL CELLULOLYTIC RUMEN BACTERIA.
    SCOTT HW; DEHORITY BA
    J Bacteriol; 1965 May; 89(5):1169-75. PubMed ID: 14292981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.
    He Y; Qiu Q; Shao T; Niu W; Xia C; Wang H; Li Q; Gao Z; Yu Z; Su H; Cao B
    J Agric Food Chem; 2017 Dec; 65(50):10859-10867. PubMed ID: 29179547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine.
    ALLISON MJ; BRYANT MP; DOETSCH RN
    J Bacteriol; 1962 Mar; 83(3):523-32. PubMed ID: 13860621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.
    Zhou YW; McSweeney CS; Wang JK; Liu JX
    Animal; 2012 May; 6(5):815-23. PubMed ID: 22558929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor requirements of ruminal cellulolytic bacteria isolated from microbial populations supplied diets with or without rapidly fermentable carbohydrate.
    Slyter LL; Weaver JM
    Appl Microbiol; 1971 Nov; 22(5):930-2. PubMed ID: 5167214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the branched-chain volatile fatty acids and phenylacetate on rminal microorganisms and nitrogen utilization by steers fed urea or isolated soy protein.
    Oltjen RR; Slyter LL; Williams EE; Kern DL
    J Nutr; 1971 Jan; 101(1):101-12. PubMed ID: 5102130
    [No Abstract]   [Full Text] [Related]  

  • 11. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets.
    Varel VH; Dehority BA
    Appl Environ Microbiol; 1989 Jan; 55(1):148-53. PubMed ID: 2705767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rumen microbes and microbial protein synthesis in Thai native beef cattle fed with feed blocks supplemented with a urea-calcium sulphate mixture.
    Cherdthong A; Wanapat M
    Arch Anim Nutr; 2013 Dec; 67(6):448-60. PubMed ID: 24228908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria.
    Caldwell DR; Bryant MP
    Appl Microbiol; 1966 Sep; 14(5):794-801. PubMed ID: 5970467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diet on amino and nucleic acids of rumen bacteria and protozoa.
    Arambel MJ; Bartley EE; Dufva GS; Nagaraja TG; Dayton AD
    J Dairy Sci; 1982 Nov; 65(11):2095-101. PubMed ID: 6185549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of branched-chain volatile fatty acids by certain anaerobic bacteria.
    Allison MJ
    Appl Environ Microbiol; 1978 May; 35(5):872-7. PubMed ID: 566082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postprandial changes of fiber-degrading microbes in the rumen of sheep fed diets varying in type of forage as monitored by real-time PCR and automated ribosomal intergenic spacer analysis.
    Saro C; Ranilla MJ; Carro MD
    J Anim Sci; 2012 Dec; 90(12):4487-94. PubMed ID: 23100580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectin-fermenting bacteria isolated from the bovine rumen.
    Dehority BA
    J Bacteriol; 1969 Jul; 99(1):189-96. PubMed ID: 5802604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving rumen ecology and microbial population by dried rumen digesta in beef cattle.
    Cherdthong A; Wanapat M; Saenkamsorn A; Supapong C; Anantasook N; Gunun P
    Trop Anim Health Prod; 2015 Jun; 47(5):921-6. PubMed ID: 25851930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.