These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 5785957)
21. [Cellulosolytic bacteria of the genus Ruminococcus from cattle rumen]. Tarakanov BV; Lavlinskiĭ DIu Mikrobiologiia; 1998; 67(4):518-21. PubMed ID: 9785345 [TBL] [Abstract][Full Text] [Related]
22. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA. DEHORITY BA J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590 [TBL] [Abstract][Full Text] [Related]
23. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. McSweeney CS; Denman SE J Appl Microbiol; 2007 Nov; 103(5):1757-65. PubMed ID: 17953586 [TBL] [Abstract][Full Text] [Related]
24. Description of development of rumen ecosystem by PCR assay in milk-fed, weaned and finished lambs in an intensive fattening system. Belanche A; Balcells J; de la Fuente G; Yañez-Ruíz DR; Fondevila M; Calleja L J Anim Physiol Anim Nutr (Berl); 2010 Oct; 94(5):648-58. PubMed ID: 20050953 [TBL] [Abstract][Full Text] [Related]
26. Rumen microbial variation and nutrient utilisation in mithun (Bos frontalis) under different feeding regimes. Prakash B; Saha SK; Khate K; Agarwal N; Katole S; Haque N; Rajkhowa C J Anim Physiol Anim Nutr (Berl); 2013 Apr; 97(2):297-304. PubMed ID: 22289020 [TBL] [Abstract][Full Text] [Related]
27. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers. Wang C; Liu Q; Guo G; Huo W; Ma L; Zhang Y; Pei C; Zhang S; Wang H Arch Anim Nutr; 2016 Dec; 70(6):441-54. PubMed ID: 27666679 [TBL] [Abstract][Full Text] [Related]
28. Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids. Blake JS; Salter DN; Smith RH Br J Nutr; 1983 Nov; 50(3):769-82. PubMed ID: 6639932 [TBL] [Abstract][Full Text] [Related]
29. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. Fessenden SW; Hackmann TJ; Ross DA; Block E; Foskolos A; Van Amburgh ME J Dairy Sci; 2019 Apr; 102(4):3036-3052. PubMed ID: 30660423 [TBL] [Abstract][Full Text] [Related]
30. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611 [TBL] [Abstract][Full Text] [Related]
31. Urea levels, protein and diethylstilbestrol for growing steers fed purified diets. Oltjen RR; Slyter LL; Wilson RL J Nutr; 1972 Apr; 102(4):479-88. PubMed ID: 5062454 [No Abstract] [Full Text] [Related]
32. Biochanin A improves fibre fermentation by cellulolytic bacteria. Harlow BE; Flythe MD; Aiken GE J Appl Microbiol; 2018 Jan; 124(1):58-66. PubMed ID: 29112792 [TBL] [Abstract][Full Text] [Related]
33. Kinetics of large ciliate protozoa in the rumen of cattle given sugar cane diets. Leng RA; Gill M; Kempton TJ; Rowe JB; Nolan JV; Stachiw SJ; Preston TR Br J Nutr; 1981 Sep; 46(2):371-84. PubMed ID: 6793059 [TBL] [Abstract][Full Text] [Related]
34. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. Martínez ME; Ranilla MJ; Tejido ML; Saro C; Carro MD J Dairy Sci; 2010 Aug; 93(8):3699-712. PubMed ID: 20655439 [TBL] [Abstract][Full Text] [Related]
35. Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. van Glyswyk NO; Wejdemar K; Kulander K Appl Environ Microbiol; 1992 Jan; 58(1):99-105. PubMed ID: 1539997 [TBL] [Abstract][Full Text] [Related]
36. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. Wang C; Liu Q; Zhang YL; Pei CX; Zhang SL; Wang YX; Yang WZ; Bai YS; Shi ZG; Liu XN J Anim Physiol Anim Nutr (Berl); 2015 Feb; 99(1):123-131. PubMed ID: 24702602 [TBL] [Abstract][Full Text] [Related]
37. The relationships between odd- and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate. Zhang Y; Liu K; Hao X; Xin H J Anim Physiol Anim Nutr (Berl); 2017 Dec; 101(6):1103-1114. PubMed ID: 27862409 [TBL] [Abstract][Full Text] [Related]
38. Influence of host diet on the fatty acid composition and content of rumen protozoa in cattle. O'Kelly JC; Spiers WG J Protozool; 1990; 37(3):190-3. PubMed ID: 2359046 [TBL] [Abstract][Full Text] [Related]
39. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Genthner BR; Davis CL; Bryant MP Appl Environ Microbiol; 1981 Jul; 42(1):12-9. PubMed ID: 6791591 [TBL] [Abstract][Full Text] [Related]
40. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. Salter DN; Daneshvar K; Smith RH Br J Nutr; 1979 Jan; 41(1):197-209. PubMed ID: 420753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]