These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5786318)

  • 1. Electroosmosis in membranes: effects of unstirred layers and transport numbers. II. Experimental.
    Barry PH; Hope AB
    Biophys J; 1969 May; 9(5):729-57. PubMed ID: 5786318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory.
    Barry PH; Hope AB
    Biophys J; 1969 May; 9(5):700-28. PubMed ID: 5786317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE ELECTROOSMOTIC EFFECTS ARISING FROM THE INTERACTION OF THE SELECTIVELY ANION AND SELECTIVELY CATION PERMEABLE PARTS OF MOSAIC MEMBRANES.
    CARR CW; SOLLNER K
    Biophys J; 1964 May; 4(3):189-201. PubMed ID: 14185581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.
    Barry PH
    Biophys J; 1998 Jun; 74(6):2903-5. PubMed ID: 9635743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow potential changes due to transport number effects in cells with unstirred membrane invaginations or dendrites.
    Barry PH
    J Membr Biol; 1984; 82(3):221-39. PubMed ID: 6099423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.
    Kim Y; Ye Q; Reinhardt H; Steudle E
    J Exp Bot; 2006; 57(15):4133-44. PubMed ID: 17085756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Model equations for graviosmotic flows in double-membrane system].
    Slezak A
    Polim Med; 2009; 39(1):3-15. PubMed ID: 19580169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic characteristics of canine aorta and vena cava wall.
    Sawyer PN; Harshaw DH
    Biophys J; 1966 Sep; 6(5):653-63. PubMed ID: 5970568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1/f Membrane noise generated by diffusion processes in unstirred solution layers.
    Neumcke B
    Biophys Struct Mech; 1975 Dec; 1(4):295-309. PubMed ID: 1234030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmosis in Nitella.
    BLINKS LR; AIRTH RL
    J Gen Physiol; 1957 Nov; 41(2):383-96. PubMed ID: 13475698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYNAPTIC "LEARNING" DUE TO ELECTROOSMOSIS: A THEORY.
    RANCK JB
    Science; 1964 Apr; 144(3615):187-9. PubMed ID: 14107478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some physicochemical properties of plasma membrane vesicles.
    Wallach DF
    J Cell Physiol; 1976 Dec; 89(4):769-70. PubMed ID: 13081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mathematical model of concentration polarization coefficient in membrane transport and volume flows.
    Bryll A; Ślęzak A
    J Biol Phys; 2017 Mar; 43(1):31-44. PubMed ID: 27838811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mathematical model of the membrane transport of ternary non-electrolyte solutions: the role of volume flows in creation of concentration boundary layers].
    Jasik-Slezak J; Slezak A
    Polim Med; 2007; 37(1):73-9. PubMed ID: 17703726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.
    Zhou H; White LR; Tilton RD
    J Colloid Interface Sci; 2005 May; 285(1):179-91. PubMed ID: 15797412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model equation of the volume flows through polymeric membrane of heterogeneous non-ionic solutions.
    Slezak A; Slezak I; Zyska A; Jasik-Slezak J; Bryll A
    Polim Med; 2005; 35(4):13-8. PubMed ID: 16619793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of electro-kinetic phenomena by imposing oscillating pressure and voltage gradients across some epithelial membranes.
    Imai Y; Miyamoto M; Nakahari T; Murakami M; Yoshida H
    Jpn J Physiol; 1986; 36(2):397-402. PubMed ID: 3488454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium.
    Sánchez JM; Li Y; Rubashkin A; Iserovich P; Wen Q; Ruberti JW; Smith RW; Rittenband D; Kuang K; Diecke FP; Fischbarg J
    J Membr Biol; 2002 May; 187(1):37-50. PubMed ID: 12029376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence forthe electroosmosis theory of transport in the phloem.
    Bowling DJ
    Biochim Biophys Acta; 1969 Jun; 183(1):230-2. PubMed ID: 5792868
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.