These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 578775)

  • 1. The intrinsic structural asymmetry of highly curved phospholipid bilayer membranes.
    Chrzeszczyk A; Wishnia A; Springer CS
    Biochim Biophys Acta; 1977 Oct; 470(2):161-9. PubMed ID: 578775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect.
    Kumar VV; Malewicz B; Baumann WJ
    Biophys J; 1989 Apr; 55(4):789-92. PubMed ID: 2720071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transbilayer phosphatidylcholine distributions in small unilamellar sphingomyelin-phosphatidylcholine vesicles: effect of altered polar head group.
    Kumar A; Gupta CM
    Biochemistry; 1985 Sep; 24(19):5157-63. PubMed ID: 3841007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations.
    Risselada HJ; Marrink SJ
    Phys Chem Chem Phys; 2009 Mar; 11(12):2056-67. PubMed ID: 19280016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid packing asymmetry in curved membranes detected by fluorescence spectroscopy.
    Bramhall J
    Biochemistry; 1986 Jun; 25(11):3479-86. PubMed ID: 3755359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes.
    de Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1975 Sep; 406(1):6-20. PubMed ID: 1242108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric packing constraints in egg phosphatidylcholine vesicles.
    Huang C; Mason JT
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):308-10. PubMed ID: 272647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surfaces of lipid bilayer vesicles.
    Huang CH; Sipe JP; Chow ST; Martin RB
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):359-62. PubMed ID: 4521808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles.
    De Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1976 Jul; 436(4):729-40. PubMed ID: 952917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H-NMR of phosphatidylcholine liposomes at low p2H in the presence of a paramagnetic shift reagent.
    Fernández MS
    Biochim Biophys Acta; 1988 Jul; 942(1):199-204. PubMed ID: 3382656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of lanthanide and calcium salts with phospholipid bilayer vesicles: the validity of the nuclear magnetic resonance method for determination of vesicle bilayer phospholipid surface ratios.
    Hutton WC; Yeagle PL; Martin RB
    Chem Phys Lipids; 1977 Jul; 19(3):255-65. PubMed ID: 890868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H-NMR study of the effect of synthetic polymers on the fluidity, transition temperature and fusion of dipalmitoyl phosphatidylcholine small vesicles.
    Ohno H; Maeda Y; Tsuchida E
    Biochim Biophys Acta; 1981 Mar; 642(1):27-36. PubMed ID: 6894388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular packing and stability within highly curved phospholipid bilayers.
    Cornell BA; Middlehurst J; Separovic F
    Biochim Biophys Acta; 1980 May; 598(2):405-10. PubMed ID: 7378411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calorimetric, 13C NMR, and 31P NMR studies on the interaction of some phenothiazine derivatives with dipalmitoyl phosphatidylcholine model membranes.
    Frenzel J; Arnold K; Nuhn P
    Biochim Biophys Acta; 1978 Feb; 507(2):185-97. PubMed ID: 580062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of spontaneous vesiculation.
    Hauser H
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5351-5. PubMed ID: 2748590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outside-inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determinied by 13C-NMR using (N-13CH3)-enriched lipids.
    de Kruyff B; van den Besselaar AM; van Deenen LL
    Biochim Biophys Acta; 1977 Mar; 465(3):443-53. PubMed ID: 836836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the location of natural alpha-tocopherol in lipid bilayers by 13C-NMR spectroscopy.
    Perly B; Smith IC; Hughes L; Burton GW; Ingold KU
    Biochim Biophys Acta; 1985 Sep; 819(1):131-5. PubMed ID: 4041449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles.
    Eigenberg KE; Chan SI
    Biochim Biophys Acta; 1980 Jun; 599(1):330-5. PubMed ID: 7397156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of phospholipases A2 on phosphatidylcholine bilayers. Effects of the phase transition, bilayer curvature and structural defects.
    Wilschut JC; Regts J; Westenberg H; Scherphof G
    Biochim Biophys Acta; 1978 Apr; 508(2):185-96. PubMed ID: 565217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.