BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5788701)

  • 1. Glucose-6-phosphate dehydrogenase and its deficiency in mutants of Corynebacterium glutamicum.
    Ihnen ED; Demain AL
    J Bacteriol; 1969 Jun; 98(3):1151-8. PubMed ID: 5788701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements.
    Moritz B; Striegel K; de Graaf AA; Sahm H
    Metab Eng; 2002 Oct; 4(4):295-305. PubMed ID: 12646324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase.
    Fraenkel DG
    J Bacteriol; 1968 Apr; 95(4):1267-71. PubMed ID: 4869212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.
    Komati Reddy G; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1971 May; 106(2):456-67. PubMed ID: 4396792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition.
    Tzvetkov M; Klopprogge C; Zelder O; Liebl W
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1659-1673. PubMed ID: 12855718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separate detection of glucose-6-phosphate dehydrogenase from 6-phosphogluconate dehydrogenase by DEAE-paper chromatography.
    Misumi H; Wada H; Ichiba Y; Shohmori T; Kosaka M
    Blut; 1982 Jul; 45(1):33-7. PubMed ID: 7082864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum.
    Jojima T; Igari T; Noburyu R; Watanabe A; Suda M; Inui M
    Biotechnol Biofuels; 2021 Feb; 14(1):45. PubMed ID: 33593398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Purification and properties of glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Pseudomonas oleovorans].
    Sokolov AP; Luchin SV; Trotsenko IuA
    Biokhimiia; 1980 Aug; 45(8):1371-8. PubMed ID: 7236789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of glucose-6-phosphate dehydrogenase (NADP+/NAD+) and 6-phosphogluconate dehydrogenase (NADP+/NAD+) from methanol-grown Pseudomonas C.
    Ben-Bassat A; Goldberg I
    Biochim Biophys Acta; 1980 Jan; 611(1):1-10. PubMed ID: 7350909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from a methanol-utilizing yeast, Candida boidinii.
    Kato N; Sahm H; Schütte H; Wagner F
    Biochim Biophys Acta; 1979 Jan; 566(1):1-11. PubMed ID: 31936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors.
    Shen J; Chen J; Solem C; Jensen PR; Liu JM
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple forms of Pseudomonas multivorans glucose-6-phosphate and 6-phosphogluconate dehydrogenases: differences in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate.
    Lessie TG; Wyk JC
    J Bacteriol; 1972 Jun; 110(3):1107-17. PubMed ID: 4402279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Brain carbohydrate metabolism following blockade of the pentose phosphate pathway by 6-aminonicotinamide].
    Lange K; Kolbe H; Keller K; Herken H
    Hoppe Seylers Z Physiol Chem; 1970 Oct; 351(10):1241-52. PubMed ID: 4249195
    [No Abstract]   [Full Text] [Related]  

  • 18. ENZYMES OF GLUCOSE CATABOLISM IN A MEMBER OF THE PSITTACOSIS GROUP.
    MOULDER JW; GRISSO DL; BRUBAKER RR
    J Bacteriol; 1965 Mar; 89(3):810-2. PubMed ID: 14273665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the Corynebacterium glutamicum proline biosynthetic pathway: a natural bypass of th proA step.
    Ankri S; Serebrijski I; Reyes O; Leblon G
    J Bacteriol; 1996 Aug; 178(15):4412-9. PubMed ID: 8755867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.