These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 5792428)

  • 1. Molecular nature of the heat of shortening of muscle.
    Chaplain RA
    Nature; 1969 Jul; 223(5201):63-4. PubMed ID: 5792428
    [No Abstract]   [Full Text] [Related]  

  • 2. The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxation processes.
    Kushmerick MJ; Larson RE; Davies RE
    Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):293-313. PubMed ID: 4391322
    [No Abstract]   [Full Text] [Related]  

  • 3. ATP, activation, and the heat of shortening of muscle.
    Davies RE; Kushmerick MJ; Larson RE
    Nature; 1967 Apr; 214(5084):148-51. PubMed ID: 6034211
    [No Abstract]   [Full Text] [Related]  

  • 4. [Binding of basic and acid dyes by glycerinated muscle fibers in ATP-of heat-induced contraction].
    Ovsianko EP
    Tsitologiia; 1968 Jul; 10(7):844-50. PubMed ID: 5709722
    [No Abstract]   [Full Text] [Related]  

  • 5. [Effect of heat and ATP on the reaction of dyes with glycerinated frog muscle fibers].
    Gamaleĭ IA
    Tsitologiia; 1970 Oct; 12(10):1266-70. PubMed ID: 5513513
    [No Abstract]   [Full Text] [Related]  

  • 6. Experimental and modelling evidence of shortening heat in cardiac muscle.
    Tran K; Han JC; Crampin EJ; Taberner AJ; Loiselle DS
    J Physiol; 2017 Oct; 595(19):6313-6326. PubMed ID: 28771742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energetics of work and heat production by single muscle fibres from the frog.
    Woledge RC; Wilson MG; Howarth JV; Elzinga G; Kometani K
    Adv Exp Med Biol; 1988; 226():677-88. PubMed ID: 3407537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of heat on the contractility and ATPase activity of frog phasic and tonic fibrils].
    Vasil'eva VV
    Tsitologiia; 1972 May; 14(5):598-602. PubMed ID: 4260832
    [No Abstract]   [Full Text] [Related]  

  • 9. Muscle fatigue induced by sustained isometric contraction.
    Gillani NV; Ghista DN
    Hum Factors; 1973 Feb; 15(1):67-73. PubMed ID: 4702858
    [No Abstract]   [Full Text] [Related]  

  • 10. [The effect of different conditions of contraction of muscle models on their reaction to staining].
    Troshina VP
    Tsitologiia; 1969 May; 11(5):582-6. PubMed ID: 4186628
    [No Abstract]   [Full Text] [Related]  

  • 11. Maximum contractile filament movement per ATP used in muscle contraction is approximately 1.3 nm not 13 nm.
    Barclay CJ
    Int J Biol Macromol; 2005 Nov; 37(3):154-5. PubMed ID: 16243390
    [No Abstract]   [Full Text] [Related]  

  • 12. An energetic model of muscle contraction.
    Chapman JB; Gibbs CL
    Biophys J; 1972 Mar; 12(3):227-36. PubMed ID: 4259475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes of sorption properties of glycerine muscle models during contraction].
    Suzdal'skaia IP; Troshina VP
    Tsitologiia; 1968 Dec; 10(12):1533-7. PubMed ID: 4185881
    [No Abstract]   [Full Text] [Related]  

  • 14. The effect of the performance of work on total energy output and metabolism during muscular contraction.
    Curtin NA; Gilbert C; Kretzschmar KM; Wilkie DR
    J Physiol; 1974 May; 238(3):455-72. PubMed ID: 4546948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding and the activation of fibrillar insect flight muscle.
    Marston S; Tregear RT
    Biochim Biophys Acta; 1974 May; 347(2):311-8. PubMed ID: 4276206
    [No Abstract]   [Full Text] [Related]  

  • 16. Muscle as a thermodynamic machine.
    Wilkie DR
    Ciba Found Symp; 1975; (31):327-39. PubMed ID: 1041245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deuterium oxide effects upon three parameters characterizing the activity of glycerol-extracted muscle: phosphate release, ATP-induced shortening, and 22Na+ distribution.
    Dragomir CT; Margineanu I; Ungureanu D; Filipescu G; Barbier A; Alexianu D
    Physiol Chem Phys; 1980; 12(1):69-76. PubMed ID: 6449018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Step-size of net filament sliding of muscle contraction.
    Wu TC; Nakamura A
    Int J Biol Macromol; 2005 Jul; 36(1-2):128-30. PubMed ID: 15985291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thermal effects of shortening in tetanic contractions of frog muscle.
    Dickinson VA; Woledge RC
    J Physiol; 1973 Sep; 233(3):659-71. PubMed ID: 4543176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the heat production of active muscle on the length of muscle.
    Lörinczi D; Tigyi J
    Acta Biochim Biophys Acad Sci Hung; 1976; 11(4):311-21. PubMed ID: 1088331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.