These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 5792663)

  • 1. Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength.
    Phillips RC; George P; Rutman RJ
    J Biol Chem; 1969 Jun; 244(12):3330-42. PubMed ID: 5792663
    [No Abstract]   [Full Text] [Related]  

  • 2. ESTIMATES OF THERMODYNAMIC DATA FOR THE FORMATION OF THE MG2 COMPLEXES OF ATP AND ADP AT ZERO IONIC STRENGTH.
    GEORGE P; PHILLIPS RC; RUTMAN RJ
    Biochemistry; 1963; 2():508-12. PubMed ID: 14069538
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate.
    Alberty RA
    J Biol Chem; 1968 Apr; 243(7):1337-43. PubMed ID: 5647260
    [No Abstract]   [Full Text] [Related]  

  • 4. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction.
    Flodgaard H; Fleron P
    J Biol Chem; 1974 Jun; 249(11):3465-74. PubMed ID: 4364656
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on adenosine triphosphate transphosphorylases. IX. Kinetic properties of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Jacobs HK; Kuby SA
    J Biol Chem; 1970 Jul; 245(13):3305-14. PubMed ID: 5459635
    [No Abstract]   [Full Text] [Related]  

  • 6. Formyltetrahydrofolate synthetase. Binding of adenosine triphosphate and related ligands determined by partition equilibrium.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1971 Nov; 246(22):6942-52. PubMed ID: 5126227
    [No Abstract]   [Full Text] [Related]  

  • 7. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.
    Alberty RA; Goldberg RN
    Biochemistry; 1992 Nov; 31(43):10610-5. PubMed ID: 1420176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin-product complex and its effect on the steady-state rate of nucleoside triphosphate hydrolysis.
    Taylor EW; Lymn RW; Moll G
    Biochemistry; 1970 Jul; 9(15):2984-91. PubMed ID: 5474799
    [No Abstract]   [Full Text] [Related]  

  • 9. Stabilization of amorphous calcium phosphate by Mg and ATP.
    Blumenthal NC; Betts F; Posner AS
    Calcif Tissue Res; 1977 Oct; 23(3):245-50. PubMed ID: 20203
    [No Abstract]   [Full Text] [Related]  

  • 10. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates.
    Alberty RA
    J Biol Chem; 1969 Jun; 244(12):3290-302. PubMed ID: 4307313
    [No Abstract]   [Full Text] [Related]  

  • 11. POTENTIOMETRIC STUDIES OF THE SECONDARY PHOSPHATE IONIZATIONS OF AMP, ADP, AND ATP, AND CALCULATIONS OF THERMODYNAMIC DATA FOR THE HYDROLYSIS REACTIONS.
    PHILLIPS RC; GEORGE P; RUTMAN RJ
    Biochemistry; 1963; 2():501-8. PubMed ID: 14069537
    [No Abstract]   [Full Text] [Related]  

  • 12. Thermodynamic study of the formation of adenine nucleotide-manganese complexes. I. "pH stat" titration method results.
    Ragot M; Sari JC; Belaich JP
    Biochim Biophys Acta; 1977 Oct; 499(3):411-20. PubMed ID: 20982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic data for the secondary phosphate ionizations of adenosine, guanosine, inosine, cytidine, and uridine nucleotides and triphosphate.
    Phillips R; Eisenberg P; George P; Rutman RJ
    J Biol Chem; 1965 Nov; 240(11):4393-7. PubMed ID: 5845840
    [No Abstract]   [Full Text] [Related]  

  • 14. "pH stat" titration method for the determination of the thermodynamic quantities associated with the formation of ATP-magnesium complexes.
    Sari JC; Ragot M; Belaich JP
    Biochim Biophys Acta; 1973 Apr; 305(1):1-10. PubMed ID: 4719598
    [No Abstract]   [Full Text] [Related]  

  • 15. INORGANIC PYROPHOSPHATE HYDROLYSIS BY RAT-LIVER MICROSOMES.
    NORDLIE RC; GEHRING AW
    Biochim Biophys Acta; 1963 Sep; 77():100-7. PubMed ID: 14078951
    [No Abstract]   [Full Text] [Related]  

  • 16. Equilibrium constants of the reactions of acetyl coenzyme A synthetase and the hydrolysis of adenosine triphosphate to adenosine monophosphate and inorganic pyrophosphate.
    Guynn RW; Webster LT; Veech RL
    J Biol Chem; 1974 May; 249(10):3248-54. PubMed ID: 4275341
    [No Abstract]   [Full Text] [Related]  

  • 17. THE SUCCINATE-LINKED NICOTINAMIDE-ADENINE DINUCLEOTIDE REDUCTION IN SUBMITOCHONDRIAL PARTICLES. I. KINETIC STUDIES OF THE REACTION.
    HOMMES FA
    Biochim Biophys Acta; 1963 Oct; 77():173-82. PubMed ID: 14090436
    [No Abstract]   [Full Text] [Related]  

  • 18. Thermodynamics of ATP hydrolysis from membrane electrode measurements of metal-ion ATP and ADP complexation.
    Fogt EJ; Rechnitz GA
    Arch Biochem Biophys; 1974 Dec; 165(2):604-14. PubMed ID: 4441094
    [No Abstract]   [Full Text] [Related]  

  • 19. Relaxation spectra of copper(II)-ATP complexes at low pH.
    Brundage RS; Karpel KL; Kustin K; Weisel J
    Biochim Biophys Acta; 1972 May; 267(2):258-67. PubMed ID: 5042836
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermodynamic studies of the formation and ionization of the magnesium(II) complexes of ADP and ATP over the pH range 5 to 9.
    Phillips RC; George P; Rutman RJ
    J Am Chem Soc; 1966 Jun; 88(12):2631-40. PubMed ID: 5941264
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.