These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5793502)

  • 1. The utilization of 14C-labelled adenosine diphosphate during the in vitro respiration of housefly sarcosomes.
    Carney GC
    Life Sci; 1969 May; 8(10):453-64. PubMed ID: 5793502
    [No Abstract]   [Full Text] [Related]  

  • 2. Pyruvate oxidation and the permeability of housefly sarcosomes.
    van den Bergh SG
    Biochem J; 1964 Oct; 93(1):128-36. PubMed ID: 5838089
    [No Abstract]   [Full Text] [Related]  

  • 3. Respiration and oxidative phosphorylation by mitochondria of red and white skeletal muscle.
    Alvarado Rigault MY; Blanchaer MC
    Can J Biochem; 1970 Jan; 48(1):27-32. PubMed ID: 4326915
    [No Abstract]   [Full Text] [Related]  

  • 4. [Study of the oxidative phosphorylating properties of pork heart sarcosomes in the presence and absence of insulin].
    Leblanc P; Bourdain M; Clauser H
    Bull Soc Chim Biol (Paris); 1968; 50(11):1091-119. PubMed ID: 5716412
    [No Abstract]   [Full Text] [Related]  

  • 5. The influence of dexamethasone on adipose tissue metabolism in vitro.
    Yorke RE
    J Endocrinol; 1967 Nov; 39(3):329-43. PubMed ID: 5624124
    [No Abstract]   [Full Text] [Related]  

  • 6. Defective respiration and oxidative phosphorylation in muscle mitochondria of hamsters in the late stages of hereditary muscular dystrophy.
    Jacobson BE; Blanchaer MC; Wrogemann K
    Can J Biochem; 1970 Sep; 48(9):1037-42. PubMed ID: 5475465
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of in vivo and in vitro administered thyroxine on substrate metabolism of isolated rabbit ventricle mitochondria. II. Characteristics of oxidative phosphorylation in mitochondria of euthyroid, hyperthyroid and thyrotoxic rabbits.
    Kimata SI; Tarjan EM
    Endocrinology; 1971 Aug; 89(2):378-84. PubMed ID: 4997572
    [No Abstract]   [Full Text] [Related]  

  • 8. Inorganic orthophosphate activation and adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation.
    Hill RD; Boyer PD
    J Biol Chem; 1967 Oct; 242(19):4320-3. PubMed ID: 6070842
    [No Abstract]   [Full Text] [Related]  

  • 9. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria.
    Ozawa T
    J Biochem; 1969 May; 65(5):679-91. PubMed ID: 5806963
    [No Abstract]   [Full Text] [Related]  

  • 10. Adenine nucleotide translocation in mitochondria. Quantitative evaluation of the correlation between the phosphorylation of endogenous and exogenous ADP in mitochondria.
    Heldt HW; Pfaff E
    Eur J Biochem; 1969 Oct; 10(3):494-500. PubMed ID: 5348075
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 12. Synchronous appearance of adenine nucleotide translocase activity and oxidative phosphorylation in mitochondria from flight-muscle of the developing sheep blowfly, Lucilia cuprina.
    Doy FA; Daday AA; Bygrave FL
    FEBS Lett; 1975 Jun; 54(2):245-8. PubMed ID: 1132511
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxidative phosphorylation in heart mitochondria isolated from chlorpromazine-treated animals.
    Ash AS; Toh HT
    Br J Pharmacol; 1970 Feb; 38(2):436P-437P. PubMed ID: 5417866
    [No Abstract]   [Full Text] [Related]  

  • 14. Partial resolution of the enzymes catalyzing oxidative phosphorylation. IV. Formation of a complex between coupling factor 1 and adenosine diphosphate and its relation to the 14C-adenosine diphosphate-adenosine triphosphate exchange reaction.
    Zalkin H; Pullman ME; Racker E
    J Biol Chem; 1965 Oct; 240(10):4011-6. PubMed ID: 5842069
    [No Abstract]   [Full Text] [Related]  

  • 15. [Functional changes in the heart in experimental microcirculatory disorders].
    Chernukh AM; Vakar MD; Aleksandrov PN; Chernysheva GV; Stoĭda LV
    Kardiologiia; 1971 Nov; 11(11):10-5. PubMed ID: 5146458
    [No Abstract]   [Full Text] [Related]  

  • 16. Substrates of oxidative metabolism in dipteran flight muscle.
    Bursell E
    Comp Biochem Physiol B; 1975 Oct; 52(2):235-8. PubMed ID: 170034
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on adenine nucleotide exchange in mitochondria from the muscle tissue of Ascaris lumbricoides (Nematoda).
    Beis I; Barrett J
    Int J Parasitol; 1974 Dec; 4(6):663-6. PubMed ID: 4430537
    [No Abstract]   [Full Text] [Related]  

  • 18. Substrate transformations dependent on respiratory states of mitochondria. Functional status and metabolic changes in rabbit heart mitochondria during pyruvate oxidation.
    Schäfer G; Balde P; Lamprecht W
    Nature; 1967 Apr; 214(5083):20-3. PubMed ID: 6033333
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycerol 1-phosphate metabolism in the housefly (Musca domestica L.) and the effects of poisons.
    Heslop JP; Ray JW
    Biochem J; 1964 Apr; 91(1):187-95. PubMed ID: 5833891
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of pyruvate-dehydrogenase interconversion in rat-liver mitochondria as related to the phosphorylation state of intramitochondrial adenine nucleotides.
    Wieland OH; Portenhauser R
    Eur J Biochem; 1974 Jun; 45(2):577-88. PubMed ID: 4854074
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.