These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 5795329)

  • 1. Cattanach's translocation as a tool for studying the action of the shaker-1 gene in the mouse.
    Deol MS; Green MC
    J Exp Zool; 1969 Mar; 170(3):301-9. PubMed ID: 5795329
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic hearing impairment in the Dalmatian dog. An audiometric, genetic and morphologic study in 53 dogs.
    Anderson H; Henricson B; Lundquist PG; Wedenberg E; Wersäll J
    Acta Otolaryngol; 1968; ():Suppl 232:1-34. PubMed ID: 5655384
    [No Abstract]   [Full Text] [Related]  

  • 3. Cattanach's translocation: cytological characterization by quinacrine mustard staining.
    Francke U; Nesbitt M
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):2918-20. PubMed ID: 5289234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A type VII myosin encoded by the mouse deafness gene shaker-1.
    Gibson F; Walsh J; Mburu P; Varela A; Brown KA; Antonio M; Beisel KW; Steel KP; Brown SD
    Nature; 1995 Mar; 374(6517):62-4. PubMed ID: 7870172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circling mouse: possible animal model for deafness.
    Lee JW; Lee EJ; Hong SH; Chung WH; Lee HT; Lee TW; Lee JR; Kim HT; Suh JG; Kim TY; Ryoo ZY
    Comp Med; 2001 Dec; 51(6):550-4. PubMed ID: 11924819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and physical delineation of the region of the mouse deafness mutation shaker-2.
    Wakabayashi Y; Kikkawa Y; Matsumoto Y; Shinbo T; Kosugi S; Chou D; Furuya M; Jishage K; Noda T; Yonekawa H; Kominami R
    Biochem Biophys Res Commun; 1997 May; 234(1):107-10. PubMed ID: 9168970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The circling mouse (C57BL/6J-cir) has a 40-kilobase genomic deletion that includes the transmembrane inner ear (tmie) gene.
    Cho KI; Suh JG; Lee JW; Hong SH; Kang TC; Oh YS; Ryoo ZY
    Comp Med; 2006 Dec; 56(6):476-81. PubMed ID: 17219777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse models to study inner ear development and hereditary hearing loss.
    Friedman LM; Dror AA; Avraham KB
    Int J Dev Biol; 2007; 51(6-7):609-31. PubMed ID: 17891721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling the genetics of deafness.
    Steel KP; Mburu P; Gibson F; Walsh J; Varela A; Brown K; Self T; Mahony M; Fleming J; Pearce A; Harvey D; Cable J; Brown SD
    Ann Otol Rhinol Laryngol Suppl; 1997 May; 168():59-62. PubMed ID: 9153119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Cytogenetic" studies of spermatids of mice carrying Cattanach's translocation by flow cytometry.
    Meistrich ML; Göhde W; White RA; Longtin JL
    Chromosoma; 1979; 74(2):141-51. PubMed ID: 574437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis of hereditary inner ear abnormalities in animals.
    Ruben RJ
    Birth Defects Orig Artic Ser; 1980; 16(7):29-34. PubMed ID: 7213982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells.
    Avraham KB; Hasson T; Steel KP; Kingsley DM; Russell LB; Mooseker MS; Copeland NG; Jenkins NA
    Nat Genet; 1995 Dec; 11(4):369-75. PubMed ID: 7493015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2.
    Liang Y; Wang A; Belyantseva IA; Anderson DW; Probst FJ; Barber TD; Miller W; Touchman JW; Jin L; Sullivan SL; Sellers JR; Camper SA; Lloyd RV; Kachar B; Friedman TB; Fridell RA
    Genomics; 1999 Nov; 61(3):243-58. PubMed ID: 10552926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine mapping of the circling (cir) gene on the distal portion of mouse chromosome 9.
    Cho KI; Lee JW; Kim KS; Lee EJ; Suh JG; Lee HJ; Kim HT; Hong SH; Chung WH; Chang KT; Hyun BH; Oh YS; Ryoo ZY
    Comp Med; 2003 Dec; 53(6):642-8. PubMed ID: 14727813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness.
    Yasunaga S; Grati M; Cohen-Salmon M; El-Amraoui A; Mustapha M; Salem N; El-Zir E; Loiselet J; Petit C
    Nat Genet; 1999 Apr; 21(4):363-9. PubMed ID: 10192385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted disruption of otog results in deafness and severe imbalance.
    Simmler MC; Cohen-Salmon M; El-Amraoui A; Guillaud L; Benichou JC; Petit C; Panthier JJ
    Nat Genet; 2000 Feb; 24(2):139-43. PubMed ID: 10655058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel type of myosin encoded by the mouse deafness gene shaker-2.
    Wakabayashi Y; Takahashi Y; Kikkawa Y; Okano H; Mishima Y; Ushiki T; Yonekawa H; Kominami R
    Biochem Biophys Res Commun; 1998 Jul; 248(3):655-9. PubMed ID: 9703981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding inner ear development with gene expression profiling.
    Chen ZY; Corey DP
    J Neurobiol; 2002 Nov; 53(2):276-85. PubMed ID: 12382281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene.
    Hertzano R; Montcouquiol M; Rashi-Elkeles S; Elkon R; Yücel R; Frankel WN; Rechavi G; Möröy T; Friedman TB; Kelley MW; Avraham KB
    Hum Mol Genet; 2004 Sep; 13(18):2143-53. PubMed ID: 15254021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of the alpha-tectorin gene (TECTA) to mouse chromosome 9 and human chromosome 11: a candidate for human autosomal dominant nonsyndromic deafness.
    Hughes DC; Legan PK; Steel KP; Richardson GP
    Genomics; 1998 Feb; 48(1):46-51. PubMed ID: 9503015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.