These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 5796867)

  • 21. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA.
    Skoultchi A; Ono Y; Moon HM; Lengyel P
    Proc Natl Acad Sci U S A; 1968 Jun; 60(2):675-82. PubMed ID: 5248824
    [No Abstract]   [Full Text] [Related]  

  • 22. A study of transfer ribonucleic acid in Neurospora. I. The attachment of amino acids and amino acid analogs.
    Shearn A; Horowitz NH
    Biochemistry; 1969 Jan; 8(1):295-303. PubMed ID: 5777329
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition by homogentisic acid of polypeptide synthesis in rat liver and brain ribosomal systems.
    Peterson NA; Raghupathy E; McKean CM
    Biochim Biophys Acta; 1971 Jan; 228(1):268-81. PubMed ID: 5546567
    [No Abstract]   [Full Text] [Related]  

  • 24. An assessment of polynucleotide inhibition studies of aminoacyl-transfer ribonucleic acid synthetases.
    Holten VZ; Jacobson KB
    Biochemistry; 1967 May; 6(5):1293-7. PubMed ID: 4962495
    [No Abstract]   [Full Text] [Related]  

  • 25. [Human protein synthesis. 3. Preparation of ribosomes, transfer RNA and aminoacyl-transfer RNA synthetases from surgical and biopsy material].
    Neth R; Heller G; Matthaei H
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1514-24. PubMed ID: 5754756
    [No Abstract]   [Full Text] [Related]  

  • 26. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. The role of guanosine triphosphate.
    Hradec J
    Biochem J; 1972 Feb; 126(4):933-43. PubMed ID: 5073244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aminoacyl transfer ribonucleic acid synthetases. II. Properties of an adenosine triphosphate-threonyl transfer ribonucleic acid synthetase complex.
    Allende CC; Chaimovich H; Gatica M; Allende JE
    J Biol Chem; 1970 Jan; 245(1):93-101. PubMed ID: 5411549
    [No Abstract]   [Full Text] [Related]  

  • 28. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases.
    Loftfield RB; Eigner EA
    Biochim Biophys Acta; 1966 Dec; 130(2):426-48. PubMed ID: 4291467
    [No Abstract]   [Full Text] [Related]  

  • 29. [Study of the complex between tRNA-phe and phenylalanine-tRNA synthetase from yeast].
    Befort N; Fasiolo F; Bollack C; Ebel JP
    Biochim Biophys Acta; 1970 Oct; 217(2):319-31. PubMed ID: 5473189
    [No Abstract]   [Full Text] [Related]  

  • 30. Alterations in specific transfer ribonucleic acids in a spectrum of hepatomas.
    Srinivasan D; Srinivasan PR; Grunberger D; Weinstein IB; Morris HP
    Biochemistry; 1971 May; 10(11):1966-73. PubMed ID: 4327391
    [No Abstract]   [Full Text] [Related]  

  • 31. Fractionation of rat liver transfer ribonucleic acid. Isolation of tyrosine, valine, serine, and phenylalanine transfer ribonucleic acids and their coding properties.
    Nishimura S; Weinstein IB
    Biochemistry; 1969 Mar; 8(3):832-42. PubMed ID: 5781021
    [No Abstract]   [Full Text] [Related]  

  • 32. Oligonucleotide inhibition of amino acid attachment.
    Letendre C; Michelson AM; Grunberg-Manago M
    Cold Spring Harb Symp Quant Biol; 1966; 31():71-5. PubMed ID: 4295325
    [No Abstract]   [Full Text] [Related]  

  • 33. [Aminoacyl RNA synthetase recognition of transfer RNA].
    Kawata M; Miura K
    Tanpakushitsu Kakusan Koso; 1967 Dec; 12(14):1263-76. PubMed ID: 4876675
    [No Abstract]   [Full Text] [Related]  

  • 34. Isoaccepting transfer ribonucleic acids in liver and brain of young and old BC3F 1 mice.
    Frazer JM; Yang WK
    Arch Biochem Biophys; 1972 Dec; 153(2):610-8. PubMed ID: 4662103
    [No Abstract]   [Full Text] [Related]  

  • 35. [Soluble ribonucleic acid from sheep mammary gland. II. Acceptor power].
    Petrissant G
    Bull Soc Chim Biol (Paris); 1969 Sep; 51(4):669-89. PubMed ID: 4899174
    [No Abstract]   [Full Text] [Related]  

  • 36. Studies on polynucleotides. LXXVI. Specificity of transfer RNA for codon recognition as studied by amino acid incorporation.
    Söll D; RajBhandary UL
    J Mol Biol; 1967 Oct; 29(1):113-24. PubMed ID: 4861608
    [No Abstract]   [Full Text] [Related]  

  • 37. Yeast lysyl-tRNA synthetase. Complex formation and heat protection by substrates.
    Berry SA; Grunberg-Manago M
    Biochim Biophys Acta; 1970 Sep; 217(1):83-94. PubMed ID: 5505338
    [No Abstract]   [Full Text] [Related]  

  • 38. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction.
    Skogerson L; Moldave K
    Arch Biochem Biophys; 1968 May; 125(2):497-505. PubMed ID: 5656804
    [No Abstract]   [Full Text] [Related]  

  • 39. Myocardial aminoacyl-transfer-ribonucleic acid synthetase and aminoacyl-transferring enzyme activity.
    Gibson K; Harris P
    Biochem J; 1972 Jan; 126(2):409-16. PubMed ID: 5071178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lack of in vitro binding of 3-methylhistidine to transfer RNA by aminoacyl ligases from skeletal muscle.
    Young VR; Baliga BS; Alexis SD; Munro HN
    Biochim Biophys Acta; 1970 Jan; 199(1):297-300. PubMed ID: 5413482
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.