These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 5797085)

  • 1. A major pathway for the mammalian oxidative degradation of phytanic acid.
    Mize CE; Avigan J; Steinberg D; Pittman RC; Fales HM; Milne GW
    Biochim Biophys Acta; 1969 Jun; 176(4):720-39. PubMed ID: 5797085
    [No Abstract]   [Full Text] [Related]  

  • 2. A pathway for oxidative degradation of phytanic acid in mammals.
    Mize CE; Steinberg D; Avigan J; Fales HM
    Biochem Biophys Res Commun; 1966 Nov; 25(3):359-65. PubMed ID: 5972842
    [No Abstract]   [Full Text] [Related]  

  • 3. Alpha-decarboxylation, an important pathway for degradation of phytanic acid in animals.
    Avigan J; Steinberg D; Gutman A; Mize CE; Milne GW
    Biochem Biophys Res Commun; 1966 Sep; 24(6):838-44. PubMed ID: 5970517
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the alpha oxidation of phytanic acid by rat liver mitochondria.
    Tsai SC; Avigan J; Steinberg D
    J Biol Chem; 1969 May; 244(10):2682-92. PubMed ID: 4181515
    [No Abstract]   [Full Text] [Related]  

  • 5. Absorption and metabolism of uniformly 14C-labeled phytol and phytanic acid by the intestine of the rat studied with thoracic duct cannulation.
    Baxter JH; Steinberg D; Mize CE; Avigan J
    Biochim Biophys Acta; 1967 Apr; 137(2):277-90. PubMed ID: 4167617
    [No Abstract]   [Full Text] [Related]  

  • 6. The formation of alpha-hydroxy phytanic acid from phytanic acid in mammalian tissues.
    Tsai SC; Herndon JH; Uhlendorf BW; Fales HM; Mize CE
    Biochem Biophys Res Commun; 1967 Aug; 28(4):571-7. PubMed ID: 6052492
    [No Abstract]   [Full Text] [Related]  

  • 7. Aspects of liver lipid metabolism in the biotin-deficient rat.
    Puddu P; Zanetti P; Turchetto E; Marchetti M
    J Nutr; 1967 Apr; 91(4):509-13. PubMed ID: 4292296
    [No Abstract]   [Full Text] [Related]  

  • 8. The synthesis and metabolism of hexadeca-4,7,10-trienoate, eicosa-8,11,14-trienoate, docosa-10,13,16-trienoate and docosa-6,9,12,15-tetraenoate in the rat.
    Sprecher H
    Biochim Biophys Acta; 1968 May; 152(3):519-30. PubMed ID: 5656820
    [No Abstract]   [Full Text] [Related]  

  • 9. Retroconversion of polyunsaturated fatty acids in vivo by partial degradation and hydrogenation.
    Schlenk H; Gellerman JL; Sand DM
    Biochim Biophys Acta; 1967 Jun; 137(3):420-6. PubMed ID: 6049939
    [No Abstract]   [Full Text] [Related]  

  • 10. Alpha-oxidation as an alternative pathway for the degradation of branched-chain fatty acids in man, and its failure in patients with Refsum's disease.
    Stokke O; Try K; Eldjarn L
    Biochim Biophys Acta; 1967 Oct; 144(2):271-84. PubMed ID: 4168936
    [No Abstract]   [Full Text] [Related]  

  • 11. Stimulation of lipogenesis in biotin-deficient chicks by dietary malonic acid.
    Donaldson WE
    Can J Biochem; 1967 Jun; 45(6):873-9. PubMed ID: 6034702
    [No Abstract]   [Full Text] [Related]  

  • 12. The stereochemistry of alpha-oxidation of fatty acids in plants. Isotope competition experiments.
    Hitchcock C; Morris LJ; James AT
    Eur J Biochem; 1968 Feb; 3(4):419-21. PubMed ID: 5642452
    [No Abstract]   [Full Text] [Related]  

  • 13. Retroconversion of docosahexaenoic acid in the rat.
    Schlenk H; Sand DM; Gellerman JL
    Biochim Biophys Acta; 1969; 187(2):201-7. PubMed ID: 5822409
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the metabolic error in Refsum's disease.
    Steinberg D; Mize CE; Avigan J; Fales HM; Eldjarn L; Try K; Stokke O; Refsum S
    J Clin Invest; 1967 Mar; 46(3):313-22. PubMed ID: 4164676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On the synthesis of 4,7,10,13,16-docosapentaenoic acid labelled with tritium at every double bond and its conversion to 5,8,11,14-eicosatetraenoic acid in rats nourished on a fat-free diet].
    Kanua WH
    Hoppe Seylers Z Physiol Chem; 1968 Mar; 349(3):333-8. PubMed ID: 5725545
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of food restriction on metabolic alterations in "control animals" used in studies on biotin-deficient rats.
    Patel MS; Mistry SP
    J Nutr; 1969 Jun; 98(2):235-40. PubMed ID: 5814635
    [No Abstract]   [Full Text] [Related]  

  • 17. Fatty livers in rats deficient in essential fatty acids.
    Sinclair AJ; Collins FD
    Biochim Biophys Acta; 1968 May; 152(3):498-510. PubMed ID: 5656819
    [No Abstract]   [Full Text] [Related]  

  • 18. Incorporation and distribution of [Me-14C]methionine methyl into liver phosphatidylcholine fractions from control and essential fatty acid deficient rats.
    Lyman RL; Hopkins SM; Sheehan G; Tinoco J
    Biochim Biophys Acta; 1969 Jan; 176(1):86-94. PubMed ID: 5766030
    [No Abstract]   [Full Text] [Related]  

  • 19. On the origin of pristane in marine organisms.
    Avigan J; Blumer M
    J Lipid Res; 1968 May; 9(3):350-2. PubMed ID: 5646185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different ratios of the LDD and DDD diastereoisomers of phytanic acid in patients with Refsum's disease.
    Eldjarn L; Try K
    Biochim Biophys Acta; 1968 Sep; 164(1):94-100. PubMed ID: 4176022
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.