These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5797455)

  • 21. Comparative aspects of sugar penetration into blood platelets.
    Mitchell WM; Heaton FC; Little RW; Faust RG
    Comp Biochem Physiol; 1970 Feb; 32(4):813-5. PubMed ID: 5437422
    [No Abstract]   [Full Text] [Related]  

  • 22. [Effect of metabolic inhibitors on sugar transport in the frog's gastrocnemius muscle].
    Doroshenko NV
    Tsitologiia; 1968 May; 10(5):588-92. PubMed ID: 5709320
    [No Abstract]   [Full Text] [Related]  

  • 23. Intestinal transport of sugars in a lizard during hibernation and activity.
    Latif SA; Zain BK; Zain-ul-Abedin M
    Comp Biochem Physiol; 1967 Oct; 23(1):121-8. PubMed ID: 6075154
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of uranyl ions on steady-state distribution of monosaccharides in baker's yeast.
    Kotyk A; Michaljanicová D; Saiyid NH
    Folia Microbiol (Praha); 1971; 16(5):355-8. PubMed ID: 5125364
    [No Abstract]   [Full Text] [Related]  

  • 25. Sugar transport at the basal and lateral aspect of the small intestinal cell.
    Bihler I; Cybulsky R
    Biochim Biophys Acta; 1973 Mar; 298(2):429-36. PubMed ID: 4719140
    [No Abstract]   [Full Text] [Related]  

  • 26. [The influence of 2,4-dinitrophenol on the cell-free degradation of hexose].
    Axt J
    Acta Biol Med Ger; 1965; 14(5):476-81. PubMed ID: 5834898
    [No Abstract]   [Full Text] [Related]  

  • 27. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
    Serrano R; Delafuente G
    Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087
    [No Abstract]   [Full Text] [Related]  

  • 28. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria.
    Degnan BA; Macfarlane GT
    FEMS Microbiol Lett; 1991 Nov; 68(2):151-6. PubMed ID: 1778437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of phosphate and arsenate uptake in yeast by monoiodoacetate, fluoride, 2,4-dinitrophenol and acetate.
    Borst-Pauwels GW; Jager S
    Biochim Biophys Acta; 1969 Apr; 172(3):399-406. PubMed ID: 5782246
    [No Abstract]   [Full Text] [Related]  

  • 31. Inhibition by 2-deoxy-D-glucose of synthesis of glycoprotein enzymes by protoplasts of Saccharomyces: relation to inhibition of sugar uptake and metabolism.
    Kuo SC; Lampen JO
    J Bacteriol; 1972 Aug; 111(2):419-29. PubMed ID: 5053466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uphill transport of sugars in the yeast Rhodotorula gracilis.
    Kotyk A; Höfer M
    Biochim Biophys Acta; 1965 Jul; 102(2):410-22. PubMed ID: 5892434
    [No Abstract]   [Full Text] [Related]  

  • 33. Absence of glucose-stimulated transport in yeast protoplasts.
    Kotyk A; Michaljanicová D; Struzinský R; Baryshnikova LM; Sychrová H
    Folia Microbiol (Praha); 1985; 30(2):110-6. PubMed ID: 2860054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monosaccharide uptake in a yeast hybrid produced by protoplast fusion.
    Loray MA; De Figueroa LI; Höfer M
    Folia Microbiol (Praha); 1997; 42(3):239-41. PubMed ID: 9378419
    [No Abstract]   [Full Text] [Related]  

  • 35. Activity of distamycin A on the induction of adaptive enzymes in Escherichia coli.
    Sanfilippo A; Morvillo E; Ghione M
    J Gen Microbiol; 1966 Jun; 43(3):369-74. PubMed ID: 5336474
    [No Abstract]   [Full Text] [Related]  

  • 36. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I
    Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864
    [No Abstract]   [Full Text] [Related]  

  • 37. Increased rates of sugar transport in Saccharomyces cerevisiae. A result of sugar metabolism.
    Spoerl E; Williams JP; Benedict SH
    Biochim Biophys Acta; 1973 Apr; 298(4):956-66. PubMed ID: 4580981
    [No Abstract]   [Full Text] [Related]  

  • 38. The nature of the glucose effect on the induced synthesis of catalase in Saccharomyces cerevisiae.
    Sulebele GA; Rege DV
    Enzymologia; 1968 Dec; 35(6):321-34. PubMed ID: 5719340
    [No Abstract]   [Full Text] [Related]  

  • 39. Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells.
    Kou SC; Christensen MS; Cirillo VP
    J Bacteriol; 1970 Sep; 103(3):671-8. PubMed ID: 5474882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar interaction with the antiluminal surface of the proximal tubule in dog kidney.
    Silverman M
    Am J Physiol; 1977 May; 232(5):F455-60. PubMed ID: 871167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.