These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 5799134)

  • 1. The hydrolysis of adenosine triphosphate by purified components of nitrogenase.
    Bui PT; Mortenson LE
    Biochemistry; 1969 Jun; 8(6):2462-5. PubMed ID: 5799134
    [No Abstract]   [Full Text] [Related]  

  • 2. ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein.
    Ljones T; Burris RH
    Biochim Biophys Acta; 1972 Jul; 275(1):93-101. PubMed ID: 5049020
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron-paramagnetic-resonance studies on nitrogenase. Investigation of the oxidation-reduction behaviour of azoferredoxin and molybdoferredoxin with potentiometric and rapid-freeze techniques.
    Zumft WG; Mortenson LE; Palmer G
    Eur J Biochem; 1974 Aug; 46(3):525-35. PubMed ID: 4368670
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of reductant in inorganic phosphate release from adenosine 5'-triphosphate by purified nitrogenase of Clostridium pasteurianum.
    Jeng DY; Morris JA; Mortenson LE
    J Biol Chem; 1970 Jun; 245(11):2809-13. PubMed ID: 5423376
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase.
    Walker GA; Mortenson LE
    Biochemistry; 1974 May; 13(11):2382-8. PubMed ID: 4364777
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of nitrogenase-catalyzed reductions.
    Hwang JC; Chen CH; Burris RH
    Biochim Biophys Acta; 1973 Jan; 292(1):256-70. PubMed ID: 4705133
    [No Abstract]   [Full Text] [Related]  

  • 7. On the structure and function of nitrogenase from Clostridium pasteurianum W5.
    Zumft WG; Cretney WC; Huang TC; Mortenson LE; Palmer G
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1525-32. PubMed ID: 4342714
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence for the existence of a fully reduced state of molybdoferredoxin during the functioning of nitrogenase, and the order of electron transfer from reduced ferredoxin.
    Walker MN; Mortenson LE
    J Biol Chem; 1974 Oct; 249(19):6356-8. PubMed ID: 4370921
    [No Abstract]   [Full Text] [Related]  

  • 9. Nitrogenase-catalyzed reactions.
    Hwang JC; Burris RH
    Biochim Biophys Acta; 1972 Nov; 283(2):339-50. PubMed ID: 4660820
    [No Abstract]   [Full Text] [Related]  

  • 10. Electron transport to nitrogenase in Azotobacter chroococcum. Purification and some properties of NADH dehydrogenase.
    Yates MG
    Eur J Biochem; 1971 Dec; 24(2):347-57. PubMed ID: 4400495
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidation reduction properties of nitrogenase from Clostridium pasteurianum W5.
    Walker M; Mortenson LE
    Biochem Biophys Res Commun; 1973 Sep; 54(2):669-76. PubMed ID: 4756793
    [No Abstract]   [Full Text] [Related]  

  • 12. Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii.
    Hadfield KL; Bulen WA
    Biochemistry; 1969 Dec; 8(12):5103-8. PubMed ID: 5365797
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of the enzymic reduction of N2: the binding of adenosine 5'-triphosphate and cyanide to the N2-reducing system.
    Bui PT; Mortenson LE
    Proc Natl Acad Sci U S A; 1968 Nov; 61(3):1021-7. PubMed ID: 5246539
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of nitrogenase from Klebsiella pneumoniae with ATP or cyanide.
    Biggins DR; Kelly M
    Biochim Biophys Acta; 1970; 205(2):288-99. PubMed ID: 5420968
    [No Abstract]   [Full Text] [Related]  

  • 15. The coupling of electron transfer in nitrogenase to the hydrolysis of magnesium adenosine triphosphate.
    Thorneley RN; Lowe DJ; Eday RR; Miller RW
    Biochem Soc Trans; 1979 Aug; 7(4):633-6. PubMed ID: 383544
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP.
    Orme-Johnson WH; Hamilton WD; Jones TL; Tso MY; Burris RH; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3142-5. PubMed ID: 4343957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous spectrophotometric assay for nitrogenase.
    Ljones T; Burris RH
    Anal Biochem; 1972 Feb; 45(2):448-52. PubMed ID: 5060601
    [No Abstract]   [Full Text] [Related]  

  • 18. Electron paramagnetic resonance studies on nitrogenase. 3. Function of magnesium adenosine 5'-triphosphate and adenosine 5'-diphosphate in catalysis by nitrogenase.
    Mortenson LE; Zumpft WG; Palmer G
    Biochim Biophys Acta; 1973 Feb; 292(2):422-35. PubMed ID: 4349920
    [No Abstract]   [Full Text] [Related]  

  • 19. Nature of oxygen inhibition of nitrogenase from Azotobacter vinelandii.
    Wong PP; Burris RH
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):672-5. PubMed ID: 4501581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.