BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 5800)

  • 1. Transsynaptic regulation of the development of end-organ innervation by the superior cervical ganglion (SCG).
    Black IB; Mytilineou C
    Trans Am Neurol Assoc; 1975; 100():95-8. PubMed ID: 5800
    [No Abstract]   [Full Text] [Related]  

  • 2. Trans-synaptic regulation of the development of end organ innervation by sympathetic neurons.
    Black IB; Mytilineou C
    Brain Res; 1976 Jan; 101(3):503-21. PubMed ID: 1141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the growth and development of sympathetic neurons in vivo.
    Black IB
    Prog Clin Biol Res; 1977; 15():61-71. PubMed ID: 22085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve stimulation in vivo acutely increases tyrosine hydroxylase activity in the superior cervical ganglion and its end organs.
    Rittenhouse AR; Zigmond RE
    Brain Res; 1990 Jul; 524(1):156-9. PubMed ID: 1976030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target organ regulation of sympathetic neuron development.
    Dibner MD; Mytilineou C; Black IB
    Brain Res; 1977 Mar; 123(2):301-10. PubMed ID: 14769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of A and B forms of monoamine oxidase in the iris-ciliary body, superior cervical ganglion, and pineal gland of albino rabbits.
    Bausher LP
    Invest Ophthalmol; 1976 Jul; 15(7):529-37. PubMed ID: 931699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of nerve growth factor and trans-synaptic regulation in the development of target organ innervation by sympathetic neurons.
    Black IB; Mytilineou C
    Brain Res; 1976 May; 108(1):199-204. PubMed ID: 6113
    [No Abstract]   [Full Text] [Related]  

  • 8. Pineal cells enhance choline acetyltransferase activity in sympathetic neurons.
    Rowe V; Parr J
    J Neurobiol; 1980 Nov; 11(6):547-56. PubMed ID: 6108350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of taget organ removal on the development of sympathetic neurons.
    Dibner MD; Black IB
    Brain Res; 1976 Feb; 103(1):93-102. PubMed ID: 3264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transneuronal effects in the development of the adrenergic peripheral innervation apparatus.
    Gajó M; Kálmán G
    Acta Biol Acad Sci Hung; 1973; 24(3):221-31. PubMed ID: 4793388
    [No Abstract]   [Full Text] [Related]  

  • 11. Substance P levels differ in sympathetic target organ terminals and ganglion perikarya.
    Kessler JA; Bell WO; Black IB
    Brain Res; 1983 Jan; 258(1):144-6. PubMed ID: 24010178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings: Delayed increase in tyrosine hydroxylase activity in rat superior cervical ganglion after electrical stimulation of the preganglionic nerve.
    Ben-Ari Y; Zigmond RE
    J Physiol; 1975 Jun; 248(1):48P-49P. PubMed ID: 239227
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of adrenergic nerve terminals: the effects of decentralization.
    Mytilineou C; Black IB
    Brain Res; 1978 Dec; 158(2):259-68. PubMed ID: 30522
    [No Abstract]   [Full Text] [Related]  

  • 14. Sympathetic reinnervation of the rat iris in vitro.
    Kopin IJ; Silberstein SD; Johnson DG; Hanbauer I; Jacobowitz DM
    Adv Biochem Psychopharmacol; 1972; 6():89-92. PubMed ID: 5055599
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunohistochemical localization of tyrosine hydroxylase in corneal nerves.
    Marfurt CF; Ellis LC
    J Comp Neurol; 1993 Oct; 336(4):517-31. PubMed ID: 7902365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropeptide Y in the mammalian pineal gland.
    Mikkelsen JD; Møller M
    Microsc Res Tech; 1999 Aug 15-Sep 1; 46(4-5):239-56. PubMed ID: 10469461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered presynaptic gene expression in transgenic mice producing dopamine in the pineal gland.
    Cho S; Hwang O; Baker H; Baik HH; Volpe BT; Son JH; Joh TH
    Synapse; 1999 Nov; 34(2):135-44. PubMed ID: 10502312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice.
    De Stefano ME; Leone L; Lombardi L; Paggi P
    Neurobiol Dis; 2005 Dec; 20(3):929-42. PubMed ID: 16023353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innervation of laryngeal nerve paraganglia: an anterograde tracing and immunohistochemical study in the rat.
    Dahlqvist A; Neuhuber WL; Forsgren S
    J Comp Neurol; 1994 Jul; 345(3):440-6. PubMed ID: 7523463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of axotomy on the development of the rat superior cervical ganglion.
    Hendry IA
    Brain Res; 1975 Jun; 90(2):235-44. PubMed ID: 237604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.