These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 580063)

  • 1. A H NMR study of the effects of metal ions, cholesterol and n-alkanes on phase transitions in the inner and outer monolayers of phospholipid vesicular membranes.
    Hunt GR; Tipping LR
    Biochim Biophys Acta; 1978 Feb; 507(2):242-61. PubMed ID: 580063
    [No Abstract]   [Full Text] [Related]  

  • 2. Lanthanide-ion transport across phospholipid vesicular membranes: a comparison of alamethicin 30 and A23187 using 1H-NMR spectroscopy.
    Hunt GR; Jones IC
    Biosci Rep; 1982 Nov; 2(11):921-8. PubMed ID: 6819014
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence for stereospecific phospholipid-cholesterol interaction in lipid bilayers.
    Chatterjie N; Brockerhoff H
    Biochim Biophys Acta; 1978 Jul; 511(1):116-9. PubMed ID: 580893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate-determining processes in the transport of Pr3+ ions by the ionophore A23187 across phospholipid vesicular membranes. A 1H-MR and theoretical study.
    Hunt GR; Tipping LR; Belmont MR
    Biophys Chem; 1978 Sep; 8(4):341-55. PubMed ID: 365254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of triton X-100 and the bile salt taurocholate as micellar ionophores or fusogens in phospholipid vesicular membranes. A 1H NMR method using the lanthanide probe ion Pr3+.
    Hunt GR
    FEBS Lett; 1980 Sep; 119(1):132-6. PubMed ID: 6893585
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport of Pr3+ by hypoglycemic sulfonylureas across liposomal membranes.
    Deleers M; Gelbcke M; Malaisse WJ
    FEBS Lett; 1983 Jan; 151(2):269-72. PubMed ID: 6403382
    [No Abstract]   [Full Text] [Related]  

  • 7. Proton magnetic resonance detection of ionophor mediated transport of praseodymium ions across phospholipid membranes.
    Fernández MS; Célis H; Montal M
    Biochim Biophys Acta; 1973 Nov; 323(4):600-5. PubMed ID: 4796859
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential interaction of cholesterol with phosphatidylcholine on the inner and outer surfaces of lipid bilayer vesicles.
    Huang CH; Sipe JP; Chow ST; Martin RB
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):359-62. PubMed ID: 4521808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidity and phase transitions of cell membranes.
    Chapman D
    Biomembranes; 1975; 7():1-9. PubMed ID: 1092378
    [No Abstract]   [Full Text] [Related]  

  • 10. Pulse NMR study of phase transitions in dipalmitoyl phosphatidylcholine multilayer systems.
    Trahms L; Boroske E
    Biochim Biophys Acta; 1979 Mar; 552(1):189-93. PubMed ID: 582012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of ionophore-mediated transport of Pr3+ ions through phospholipid membranes using 1h NMR spectroscopy.
    Hunt GR
    FEBS Lett; 1975 Oct; 58(1):194-6. PubMed ID: 773684
    [No Abstract]   [Full Text] [Related]  

  • 12. The formation and annealing of structural defects in lipid bilayer vesicles.
    Lawaczeck R; Kainosho M; Chan SI
    Biochim Biophys Acta; 1976 Sep; 443(3):313-30. PubMed ID: 963059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 13-C NMR investigation of phospholipid membranes with the aid of shift reagents.
    Shapiro YE; Viktorov AV; Volkova VI; Barsukov LI; Bystrov VF; Bergelson LD
    Chem Phys Lipids; 1975 May; 14(3):227-32. PubMed ID: 165014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The composition of black lipid membranes formed from egg-yolk lecithin, cholesterol and n-decane.
    Bunce AS; Hider RC
    Biochim Biophys Acta; 1974 Sep; 363(3):423-7. PubMed ID: 4477718
    [No Abstract]   [Full Text] [Related]  

  • 15. Cholesterol esters and membrane permeability. A nuclear magnetic resonance (MNR) study.
    Forrest BJ; Cushley RJ
    Atherosclerosis; 1977 Nov; 28(3):309-18. PubMed ID: 413555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermodynamic study of the partition of n-hexane into phosphatidylcholine and phosphatidylcholine-cholesterol bilayers.
    Simon SA; Stone WL; Busto-Latorre P
    Biochim Biophys Acta; 1977 Aug; 468(3):378-88. PubMed ID: 560208
    [No Abstract]   [Full Text] [Related]  

  • 17. Difference in orientational order in phospholipid and sphingomyelin bilayers.
    Neuringer LJ; Sears B; Jungalwala FB; Shriver EK
    FEBS Lett; 1979 Aug; 104(1):173-5. PubMed ID: 582585
    [No Abstract]   [Full Text] [Related]  

  • 18. Phospholipid/cholesterol membranes containing n-alkanols: a 2H-NMR study.
    Thewalt JL; Cushley RJ
    Biochim Biophys Acta; 1987 Dec; 905(2):329-38. PubMed ID: 3689784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes.
    Shepherd JC; Büldt G
    Biochim Biophys Acta; 1978 Dec; 514(1):83-94. PubMed ID: 581475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intrinsic structural asymmetry of highly curved phospholipid bilayer membranes.
    Chrzeszczyk A; Wishnia A; Springer CS
    Biochim Biophys Acta; 1977 Oct; 470(2):161-9. PubMed ID: 578775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.