These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 5802576)

  • 1. Calculation of dE-dx and energy loss distributions in spherical cavities for monoenergetic neutron fields.
    Dvorak RF
    Health Phys; 1969 Aug; 17(2):279-93. PubMed ID: 5802576
    [No Abstract]   [Full Text] [Related]  

  • 2. Dosimetry of monoenergetic neutrons. Calculation of parameters of dosimetric significance in monoenergetic neutron irradiations. NYO-2740-6.
    Bengtsson LG; Goodman LJ; Robertson JS
    NYO Rep; 1969 Jan; ():99-107. PubMed ID: 5370885
    [No Abstract]   [Full Text] [Related]  

  • 3. Neutron dose equivalent next to the target shield of a neutron therapy facility using an LET counter.
    Stinchcomb TG; Kuchnir FT
    Med Phys; 1981; 8(5):688-94. PubMed ID: 6793823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of dose distributions of linear energy transfer in matter irradiated by fast neutrons.
    Schell MC; Pearson DW; DeLuca PM; Haight RC
    Med Phys; 1990; 17(1):1-9. PubMed ID: 2308539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes.
    Tsuda S; Nakane Y; Yamaguchi Y
    Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of lineal-energy distributions for neutrons of 8 keV to 65 MeV by using a tissue-equivalent proportional counter.
    Nunomiya T; Kim E; Kurosaw T; Taniguchi S; Nakamura T; Nakane Y; Sakamoto Y; Tanaka S
    Radiat Prot Dosimetry; 2002; 102(1):49-59. PubMed ID: 12212902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of radiation dose due to protons and neutrons with energies from 0.4 to 2.4 GeV.
    Wright HA; Anderson VE; Turner JE; Neufeld J; Snyder WS
    Health Phys; 1969 Jan; 16(1):13-31. PubMed ID: 5766054
    [No Abstract]   [Full Text] [Related]  

  • 9. Neutron response of the chlorobenzene-ethanol-trimethylpentane dosimetry system.
    Miljanić S; Razem D
    Radiat Prot Dosimetry; 2007; 126(1-4):198-205. PubMed ID: 17522040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for determining the neutron response function of "neutron insensitive" dosimeters. Method and preliminary determinations.
    Kuchnir FT; Vyborny CJ; Skaggs LS
    Radiology; 1975 Jul; 116(1):217-9. PubMed ID: 1138272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo simulation of monoenergetic neutrons traversing rectangular and spherical polyethylene moderators.
    Monk SD; Selwood M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):182-6. PubMed ID: 21186216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.
    Caresana M; Ferrarini M; Parravicini A; Sashala Naik A
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):100-3. PubMed ID: 24324248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On neutron dosimetry by semiconductor detectors and hydrogenous radiator assembly.
    Deme S
    Health Phys; 1970 Jun; 18(6):705-10. PubMed ID: 5513263
    [No Abstract]   [Full Text] [Related]  

  • 14. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.
    Williams AM; Beeley PA; Spyrou NM
    Radiat Prot Dosimetry; 2004; 110(1-4):497-502. PubMed ID: 15353698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Bonner sphere systems at monoenergetic and thermal neutron fields.
    Lacoste V; Gressier V; Pochat JL; Fernández F; Bakali M; Bouassoule T
    Radiat Prot Dosimetry; 2004; 110(1-4):529-32. PubMed ID: 15353703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.
    Aslam ; Matysiak W; Atanackovic J; Waker AJ
    Health Phys; 2012 Jun; 102(6):603-13. PubMed ID: 22570919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV.
    Nolte R; Allie MS; Böttger R; Brooks FD; Buffler A; Dangendorf V; Friedrich H; Guldbakke S; Klein H; Meulders JP; Schlegel D; Schuhmacher H; Smit FD
    Radiat Prot Dosimetry; 2004; 110(1-4):97-102. PubMed ID: 15353629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local dose from neutron-produced-recoil ions in the region of a therapeutic 252 Cf needle.
    Jones TD; Auxier JA
    Radiology; 1972 Jul; 104(1):187-9. PubMed ID: 5033583
    [No Abstract]   [Full Text] [Related]  

  • 19. Secondary photon fields produced in accelerator-based sources for neutron generation.
    Agosteo S; Cesana A; Garlati L; Pola A; Terrani M
    Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical neutron dosimetry with superheated drops.
    Apfel RE; Lo YC
    Health Phys; 1989 Jan; 56(1):79-83. PubMed ID: 2909506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.