These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 5803225)

  • 1. The ultrastructure of cells in the spinal cord of pre- and postnatal rats.
    Misrabi M
    J Anat; 1969 Jul; 105(Pt 1):214. PubMed ID: 5803225
    [No Abstract]   [Full Text] [Related]  

  • 2. Developmental stages of the prenatal spinal cord in man.
    Malínský J; Malínská J
    Folia Morphol (Praha); 1970; 18(3):228-35. PubMed ID: 4194322
    [No Abstract]   [Full Text] [Related]  

  • 3. Distribution and differentiation of A2B5+ glial precursors in the developing rat spinal cord.
    Fok-Seang J; Miller RH
    J Neurosci Res; 1994 Feb; 37(2):219-35. PubMed ID: 8151730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural features of immaturity in blood vessels of neonatal rat spinal cord.
    Rafałowska J; Fidziańska A; Jamrozik Z
    Pol J Pathol; 1999; 50(4):269-76. PubMed ID: 10721267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure of motor nuclei of the rat spinal cord during postnatal ontogeny (according to the results of light and electron microscopic studies].
    Motorina MV
    Arkh Anat Gistol Embriol; 1980 Mar; 78(3):33-42. PubMed ID: 7396733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of fetal spinal cord and cortex implants into adult rat spinal cord.
    Bernstein JJ; Patel U; Kelemen M; Jefferson M; Turtil S
    J Neurosci Res; 1984; 11(4):359-72. PubMed ID: 6748109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cultivation and differentiation of spinal cord-derived stem cells in vitro in rats].
    Wang D; Xu J; Jiang H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jul; 18(4):247-9. PubMed ID: 15323431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in the expression of calbindin and potassium-channel subunits Kv3.1b and Kv3.2 in mouse Renshaw cells.
    Song ZM; Hu J; Rudy B; Redman SJ
    Neuroscience; 2006 May; 139(2):531-8. PubMed ID: 16460880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The caudal end of the rat spinal cord: transformation to and ultrastructure of the filum terminale.
    Réthelyi M; Lukácsi E; Boros C
    Brain Res; 2004 Dec; 1028(2):133-9. PubMed ID: 15527738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal cord tumors induced by N-ethyl-N-nitrosourea in rats: presence of spinal subpial target cells.
    Naito M; Naito Y; Ito A; Watanabe H; Kawashima K
    J Natl Cancer Inst; 1984 Mar; 72(3):715-24. PubMed ID: 6583456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrastructure of neurons in late ontogenesis].
    Stupina AS; Mezhiborskaia NA; Kvitnitskaia-Ryzhova TIu
    Vestn Akad Med Nauk SSSR; 1986; (1):58-67. PubMed ID: 3953149
    [No Abstract]   [Full Text] [Related]  

  • 12. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord.
    Wu S; Suzuki Y; Ejiri Y; Noda T; Bai H; Kitada M; Kataoka K; Ohta M; Chou H; Ide C
    J Neurosci Res; 2003 May; 72(3):343-51. PubMed ID: 12692901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat.
    Wu S; Suzuki Y; Noda T; Bai H; Kitada M; Kataoka K; Nishimura Y; Ide C
    J Neurosci Res; 2002 Sep; 69(6):940-5. PubMed ID: 12205687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.
    Ogawa Y; Sawamoto K; Miyata T; Miyao S; Watanabe M; Nakamura M; Bregman BS; Koike M; Uchiyama Y; Toyama Y; Okano H
    J Neurosci Res; 2002 Sep; 69(6):925-33. PubMed ID: 12205685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranuclear inclusions in neurones and glial cells in the spinal cord of foetal, neonatal and adult rats.
    Misrabi M
    J Anat; 1969 May; 104(Pt 3):588-9. PubMed ID: 5804579
    [No Abstract]   [Full Text] [Related]  

  • 16. Adult rodent spinal cord derived neural stem cells. Isolation and characterization.
    Shihabuddin LS
    Methods Mol Biol; 2002; 198():67-77. PubMed ID: 11951642
    [No Abstract]   [Full Text] [Related]  

  • 17. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors.
    Kar S; Quirion R
    J Comp Neurol; 1995 Apr; 354(2):253-81. PubMed ID: 7782502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal relationship between myelinogenesis and the appearance of a basic protein in the spinal cord of the white rat.
    Kornguth SE; Anderson JW; Scott G
    J Comp Neurol; 1966 May; 127(1):1-18. PubMed ID: 5961966
    [No Abstract]   [Full Text] [Related]  

  • 19. Gliogenesis in the prenatal rabbit spinal cord.
    Sturrock RR
    J Anat; 1982 Jun; 134(Pt 4):771-93. PubMed ID: 7130040
    [No Abstract]   [Full Text] [Related]  

  • 20. Growth, differentiation, and viability of fetal rat cortical and spinal cord implants into adult rat spinal cord.
    Patel U; Bernstein JJ
    J Neurosci Res; 1983; 9(3):303-10. PubMed ID: 6854669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.