These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 5803389)

  • 1. Nuclear magnetic resonance studies of drug-receptor interactions. The binding of epinphrine to isolated mouse liver cells.
    Fischer JJ; Jost MC
    Mol Pharmacol; 1969 Jul; 5(4):420-4. PubMed ID: 5803389
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of new metabolites of daunomycin and adriamycin.
    Bullock FJ; Bruni RJ; Asbell MA
    J Pharmacol Exp Ther; 1972 Jul; 182(1):70-6. PubMed ID: 5041656
    [No Abstract]   [Full Text] [Related]  

  • 3. NMR studies on drug-receptor interactions. The binding of atropine and eserine to acetylcholinesterase.
    Kato G
    Int Z Klin Pharmakol Ther Toxikol; 1971 Aug; 5(1):12-9. PubMed ID: 4328180
    [No Abstract]   [Full Text] [Related]  

  • 4. Nuclear magnetic resonance studies of the interaction of chloroquine diphosphate with adenosine 5'-phosphate and other nucleotides.
    Sternglanz H; Yielding KL; Pruitt KM
    Mol Pharmacol; 1969 Jul; 5(4):376-81. PubMed ID: 5803387
    [No Abstract]   [Full Text] [Related]  

  • 5. N2 atom of guanine and N6 atom of adenine residues as sites for covalent binding of metabolically activated 1'-hydroxysafrole to mouse liver DNA in vivo.
    Phillips DH; Miller JA; Miller EC; Adams B
    Cancer Res; 1981 Jul; 41(7):2664-71. PubMed ID: 7248936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure and quantitation of catecholamines covalently bound to glass beads.
    Venter JC; Arnold LJ; Kaplan NO
    Mol Pharmacol; 1975 Jan; 11(1):1-9. PubMed ID: 1117861
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on thiamine as an artificial acetylcholine receptor effect of Cu (II) on thiamine-acetylcholine interaction.
    Marzotto A; Galzigna L
    Int J Vitam Nutr Res; 1971; 41(3):401-7. PubMed ID: 5149520
    [No Abstract]   [Full Text] [Related]  

  • 8. The INPHARMA technique for pharmacophore mapping: A theoretical guide to the method.
    Orts J; Griesinger C; Carlomagno T
    J Magn Reson; 2009 Sep; 200(1):64-73. PubMed ID: 19592283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Reaction between metal-free porphyrins and sodium in aprotonic solvents].
    Siniakov GN; Shul'ga AM
    Biofizika; 1980; 25(1):25-9. PubMed ID: 6245720
    [No Abstract]   [Full Text] [Related]  

  • 10. Nuclear magnetic resonance study of the exchange rates of the peptide protons of glycylglycine and triglycine in water an aqueous urea.
    Swenson CA; Koob L
    J Phys Chem; 1970 Sep; 74(18):3376-80. PubMed ID: 5524120
    [No Abstract]   [Full Text] [Related]  

  • 11. Self-association and binding sites of some psychotomimetic tryptamine derivatives and related compounds: nuclear magnetic resonance investigations.
    Sapper H; Lohmann W
    Mol Pharmacol; 1976 Jul; 12(4):605-11. PubMed ID: 958209
    [No Abstract]   [Full Text] [Related]  

  • 12. [Determination of the configuration of cyclanic alpha-amino alchols related to adrenaline with the help of nuclear magnetic resonance].
    Violland R; Gaige R; Pacheco H
    Bull Soc Chim Fr; 1967 Jun; 6():2105-6. PubMed ID: 5601361
    [No Abstract]   [Full Text] [Related]  

  • 13. Biological ion exchanger resins. IV. Evidence for potassium association with fixed charges in muscle and brain by pulsed nuclear magnetic resonance of 39K.
    Cope FW; Damadian R
    Physiol Chem Phys; 1974; 6(1):17-30. PubMed ID: 4836049
    [No Abstract]   [Full Text] [Related]  

  • 14. Structure of daunomycin complexed to d-TGATCA by two-dimensional nuclear magnetic resonance spectroscopy.
    Barthwal R; Sharma U; Srivastava N; Jain M; Awasthi P; Kaur M; Barthwal SK; Govil G
    Eur J Med Chem; 2006 Jan; 41(1):27-39. PubMed ID: 16293348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of ganglioside GM1 and myelin basic protein studied by carbon-13 and proton nuclear magnetic resonance spectroscopy.
    Ong RL; Yu RK
    J Neurosci Res; 1984; 12(2-3):377-93. PubMed ID: 6209415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes and drug action.
    Burgen AS
    Fed Proc; 1981 Nov; 40(13):2723-8. PubMed ID: 7297703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy.
    Calderan L; Marzola P; Nicolato E; Fabene PF; Milanese C; Bernardi P; Giordano A; Cinti S; Sbarbati A
    Obesity (Silver Spring); 2006 Mar; 14(3):405-14. PubMed ID: 16648611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction study of bioactive molecules with fibrinogen and human platelets determined by 1H NMR relaxation experiments.
    Bonechi C; Martini S; Rossi C
    Bioorg Med Chem; 2009 Feb; 17(4):1630-5. PubMed ID: 19157885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nuclear magnetic resonance study of the interaction of L-epinephrine with phospholipid vesicles.
    Hammes GG; Tallman DE
    Biochim Biophys Acta; 1971 Mar; 233(1):17-25. PubMed ID: 5103878
    [No Abstract]   [Full Text] [Related]  

  • 20. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.
    Assfalg M; Gianolio E; Zanzoni S; Tomaselli S; Russo VL; Cabella C; Ragona L; Aime S; Molinari H
    J Med Chem; 2007 Nov; 50(22):5257-68. PubMed ID: 17915850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.