These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
51 related articles for article (PubMed ID: 5806411)
1. [pH-dependence of the transport of D(+) glucose through the human erythrocyte membrane]. Bolis L; Elia M; Luly P; Wilbrandt W Boll Chim Farm; 1969 Apr; 108(4):211-6. PubMed ID: 5806411 [No Abstract] [Full Text] [Related]
2. The pH dependence of exchange transport of glucose in human erythrocytes. Lacko L; Wittke B; Geck P J Cell Physiol; 1972 Aug; 80(1):73-8. PubMed ID: 5071879 [No Abstract] [Full Text] [Related]
3. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects. Lee ID; Palsson BO Biomed Biochim Acta; 1990; 49(8-9):771-89. PubMed ID: 2082921 [TBL] [Abstract][Full Text] [Related]
4. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of glucose transport in human erythrocytes by benzylalcohol. Lacko L; Wittke B; Lacko I J Cell Physiol; 1978 Aug; 96(2):199-201. PubMed ID: 27526 [TBL] [Abstract][Full Text] [Related]
6. Interaction of chlorpromazine with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1980; 30(11):1852-5. PubMed ID: 7192992 [TBL] [Abstract][Full Text] [Related]
7. [Diffusion of glucose through the erythrocyte membrane]. Zaritskiĭ AR; Perevedentseva EV; Prokopenko GA; Fok MV; Pronin VS Biofizika; 1994; 39(5):872-5. PubMed ID: 7819313 [TBL] [Abstract][Full Text] [Related]
8. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
9. The effects of replacement of water with D2O on D-glucose transfer in human erythrocytes [proceedings]. Baker GF; Naftalin RJ J Physiol; 1978 Jul; 280():25P. PubMed ID: 690874 [No Abstract] [Full Text] [Related]
10. Effect of inhibitors on the transport of dinitrophenyl-S-glutathione in human erythrocytes. Pułaski L; Bartosz G Biochem Mol Biol Int; 1995 Aug; 36(5):935-42. PubMed ID: 7581009 [TBL] [Abstract][Full Text] [Related]
11. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. SEN AK; WIDDAS WF J Physiol; 1962 Mar; 160(3):392-403. PubMed ID: 13910603 [No Abstract] [Full Text] [Related]
12. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation. Chi Y; Mo S; Mota de Freitas D Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178 [TBL] [Abstract][Full Text] [Related]
13. Developmental changes in glucose transport of guinea pig erythrocytes. Kondo T; Beutler E J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191 [TBL] [Abstract][Full Text] [Related]
14. [Permeability of human erythrocytes to D(+) glucose in relation to temperature]. Bolis L; Luly P; Elia M; Mariotti M Boll Soc Ital Biol Sper; 1970 Aug; 46(15):656-8. PubMed ID: 5503223 [No Abstract] [Full Text] [Related]
15. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes. Fröman G Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255 [TBL] [Abstract][Full Text] [Related]
16. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019 [TBL] [Abstract][Full Text] [Related]
17. [Contribution to the sugar transport in erythrocyte ghosts]. Lacko L; Burger M Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):119-24. PubMed ID: 4157982 [No Abstract] [Full Text] [Related]
18. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes. Miller DM Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699 [TBL] [Abstract][Full Text] [Related]
19. VARIATIONS WITH TEMPERATURE AND PH OF THE PARAMETERS OF GLUCOSE TRANSFER ACROSS THE ERYTHROCYTE MEMBRANE IN THE FOETAL GUINEA-PIG. DAWSON AC; WIDDAS WF J Physiol; 1964 Jul; 172(1):107-22. PubMed ID: 14195686 [No Abstract] [Full Text] [Related]
20. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism. Cloherty EK; Diamond DL; Heard KS; Carruthers A Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]