These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 5806595)

  • 1. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes.
    Gary-Bobo CM; DiPolo R; Solomon AK
    J Gen Physiol; 1969 Sep; 54(3):369-82. PubMed ID: 5806595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport parameters in a porous cellulose acetate membrane.
    DiPolo R; Sha'afi RI; Solomon AK
    J Gen Physiol; 1970 Jan; 55(1):63-76. PubMed ID: 5410490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The coupling of solute fluxes in membranes.
    Galey WR; Van Bruggen JT
    J Gen Physiol; 1970 Feb; 55(2):220-42. PubMed ID: 5413079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The size of the unstirred layer as a function of the solute diffusion coefficient.
    Pohl P; Saparov SM; Antonenko YN
    Biophys J; 1998 Sep; 75(3):1403-9. PubMed ID: 9726941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of geometrical and chemical constraints on water flux across artificial membranes.
    Gary-Bobo CM; Solomon AK
    J Gen Physiol; 1971 May; 57(5):610-22. PubMed ID: 5553104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.
    Andreoli TE; Dennis VW; Weigl AM
    J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonelectrolyte diffusion across lipid bilayer systems.
    Poznansky M; Tong S; White PC; Milgram JM; Solomon AK
    J Gen Physiol; 1976 Jan; 67(1):45-66. PubMed ID: 1245835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of butyrylcellulose membranes for benzene/cyclohexane mixtures containing a low benzene concentration by pervaporation.
    Uragami T; Tsukamoto K; Miyata T
    Biomacromolecules; 2004; 5(6):2116-21. PubMed ID: 15530024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diffusion of sennoside A through a cellulose membrane.
    Woodford R; Morrison JC
    J Pharm Pharmacol; 1969 Sep; 21(9):602-6. PubMed ID: 4390338
    [No Abstract]   [Full Text] [Related]  

  • 10. Patterns of nonelectrolyte permeability in human red blood cell membrane.
    Naccache P; Sha'afi RI
    J Gen Physiol; 1973 Dec; 62(6):714-36. PubMed ID: 4804758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of cationic dendrons with albumin and their diffusion through cellulose membranes.
    Purohit G; Sakthivel T; Florence AT
    Int J Pharm; 2003 Mar; 254(1):37-41. PubMed ID: 12615406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the in vivo determination of membrane permeabilities and solute diffusivities.
    Babb AL; Maurer CJ; Fry DL; Popovich RP; Ramos CP
    Trans Am Soc Artif Intern Organs; 1968; 14():25-30. PubMed ID: 5701541
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.
    Tiwari AK; Ahmad S
    J Colloid Interface Sci; 2006 Jun; 298(1):274-81. PubMed ID: 16499917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THE FRICTIONAL COEFFICIENTS OF THE FLOWS OF NON-ELECTROLYTES THROUGH ARTIFICIAL MEMBRANES.
    GINZBURG BZ; KATCHALSKY A
    J Gen Physiol; 1963 Nov; 47(2):403-18. PubMed ID: 14080823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability of red cell membranes to small hydrophilic and lipophilic solutes.
    Sha'afi RI; Gary-Bobo CM; Solomon AK
    J Gen Physiol; 1971 Sep; 58(3):238-58. PubMed ID: 5095677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation, control, and prediction of drug diffusion through polymeric membranes. II. Diffusion of aminophenones through silastic membranes: a test of the pH-partition hypothesis.
    Garrett ER; Chemburkar PB
    J Pharm Sci; 1968 Jun; 57(6):949-59. PubMed ID: 5671342
    [No Abstract]   [Full Text] [Related]  

  • 17. Insulin transport across porous charged membranes: Effect of the electrostatic interaction.
    Zhang S; Matsumoto H; Saito K; Minagawa M; Tanioka A
    Biotechnol Prog; 2009; 25(5):1379-86. PubMed ID: 19585552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biologic methods of evaluation of ointments and ointment bases].
    Mandak M; Kuchera I; Veber V
    Farmatsiia; 1969; 18(2):73-9. PubMed ID: 4893500
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of hydrogen bonding on the diffusion of water in n-alkanes and n-alcohols measured with a novel single microdroplet method.
    Su JT; Duncan PB; Momaya A; Jutila A; Needham D
    J Chem Phys; 2010 Jan; 132(4):044506. PubMed ID: 20113048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.