These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 580731)

  • 1. Methylmercury chloride induces learning deficits in prenatally treated rats.
    Müsch HR; Bornhausen M; Kriegel H; Greim H
    Arch Toxicol; 1978 Apr; 40(2):103-8. PubMed ID: 580731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal behavioral effects in mice after prenatal exposure to methylmercury.
    Hughes JA; Annau Z
    Pharmacol Biochem Behav; 1976 Apr; 4(4):385-91. PubMed ID: 935210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gestational exposure to methylmercury retards choice in transition in aging rats.
    Newland MC; Reile PA; Langston JL
    Neurotoxicol Teratol; 2004; 26(2):179-94. PubMed ID: 15019952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of startle and locomotor activity in rats exposed prenatally to methylmercury.
    Geyer MA; Butcher RE; Fite K
    Neurobehav Toxicol Teratol; 1985; 7(6):759-65. PubMed ID: 3835478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prenatal methyl mercury exposure: II. Alterations in learning and psychotropic drug sensitivity in adult offspring.
    Eccles CU; Annau Z
    Neurobehav Toxicol Teratol; 1982; 4(3):377-82. PubMed ID: 7099357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurobehavioral effect of chronic and bolus doses of methylmercury following prenatal exposure in C57BL/6 weanling mice.
    Liang J; Inskip M; Newhook D; Messier C
    Neurotoxicol Teratol; 2009; 31(6):372-81. PubMed ID: 19706324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral teratology of methylmercury.
    Shimai S; Satoh H
    J Toxicol Sci; 1985 Aug; 10(3):199-216. PubMed ID: 3906144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.
    Schulz D; Henn FA; Petri D; Huston JP
    Neuroscience; 2016 Aug; 329():83-92. PubMed ID: 27163379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gestational methylmercury exposure selectively increases the sensitivity of operant behavior to cocaine.
    Reed MN; Newland MC
    Behav Neurosci; 2009 Apr; 123(2):408-17. PubMed ID: 19331463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement.
    Lee A; Clancy S; Fleming AS
    Behav Brain Res; 2000 Mar; 108(2):215-31. PubMed ID: 10701665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement.
    Lee A; Clancy S; Fleming AS
    Behav Brain Res; 1999 Apr; 100(1-2):15-31. PubMed ID: 10212050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective learning impairment of delayed reinforcement autoshaped behavior caused by low doses of trimethyltin.
    Cohen CA; Messing RB; Sparber SB
    Psychopharmacology (Berl); 1987; 93(3):301-7. PubMed ID: 3124161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tactile-kinesthetic system of rats as an animal model for minimal brain dysfunction.
    Elsner J
    Arch Toxicol; 1991; 65(6):465-73. PubMed ID: 1929866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of response-contingent incentives in lithium chloride-mediated suppression of an operant response.
    Meachum CL
    Q J Exp Psychol B; 1990 May; 42(2):175-95. PubMed ID: 2164238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of repeated treatment with 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on the lever press responding of the rat under FI and DRL schedules of food reinforcement.
    Evenden J; Ryan C; Palejko W
    Psychopharmacology (Berl); 1995 Jul; 120(1):81-92. PubMed ID: 7480539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of ketamine on schedule-controlled responding and motility.
    Meliska CJ; Trevor AJ
    Pharmacol Biochem Behav; 1978 Jun; 8(6):679-83. PubMed ID: 693552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of acetylmethadol on motor activity and schedule-controlled responding.
    Mcgivney WT; McMillan DE
    Pharmacol Biochem Behav; 1979 Feb; 10(2):261-5. PubMed ID: 450937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gestational exposure to methylmercury and n-3 fatty acids: effects on high- and low-rate operant behavior in adulthood.
    Paletz EM; Craig-Schmidt MC; Newland MC
    Neurotoxicol Teratol; 2006; 28(1):59-73. PubMed ID: 16413743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lever pressing responses under a fixed-ratio schedule of mice with 6-hydroxydopamine-induced dopamine depletion in the nucleus accumbens.
    Tsutsui Y; Nishizawa K; Kai N; Kobayashi K
    Behav Brain Res; 2011 Feb; 217(1):60-6. PubMed ID: 20943202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.