These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5808069)

  • 1. Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides.
    Hengstenberg W; Penberthy WK; Hill KL; Morse ML
    J Bacteriol; 1969 Aug; 99(2):383-8. PubMed ID: 5808069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the mechanism of phosphorylation and transport of beta-galactosides by the lactose phosphotransferase system of Staphylococcus aureus. Kinetic investigations using tosyl galactosides as reversible dead-end inhibitors.
    Hays JB; Sussman ML
    Biochim Biophys Acta; 1976 Aug; 443(2):267-83. PubMed ID: 953019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition by 6-O-tosyl galactosides of beta-galactoside phosphorylation and transport by the lactose phosphotransferase system of Staphylococcus aureus.
    Hays JB; Sussman ML; Glass TW
    J Biol Chem; 1975 Nov; 250(22):8834-9. PubMed ID: 1184591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport.
    Kennedy EP; Scarborough GA
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):225-8. PubMed ID: 5341056
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate.
    Sossna-Wunder G; Hengstenberg W; Briozzo P; Deutscher J
    J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus.
    Breidt F; Hengstenberg W; Finkeldei U; Stewart GC
    J Biol Chem; 1987 Dec; 262(34):16444-9. PubMed ID: 2824493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the relation of thiomethyl-beta-D-galactoside accumulation to thiomethyl-beta-D-galactoside phosphorylation in Staphylococcus aureus HS1159.
    Laue P; MacDonald RE
    Biochim Biophys Acta; 1968 Oct; 165(3):410-8. PubMed ID: 5737935
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolism of lactose by Staphylococcus aureus and its genetic basis.
    Morse ML; Hill KL; Egan JB; Hengstenberg W
    J Bacteriol; 1968 Jun; 95(6):2270-4. PubMed ID: 5669899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 13. Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus.
    Simoni RD; Hays JB; Nakazawa T; Roseman S
    J Biol Chem; 1973 Feb; 248(3):957-65. PubMed ID: 4684716
    [No Abstract]   [Full Text] [Related]  

  • 14. Irreversibel inactivation of the membrane-bound enzyme IIlac of the lactose phosphotransferase system of Staphylococcus aureus by triton X-100 and protection by substrates.
    Sussman ML; Hays JB
    Biochim Biophys Acta; 1977 Mar; 465(3):559-70. PubMed ID: 836839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic evidence for the physiological significance of the D-tagatose 6-phosphate pathway of lactose and D-galactose degradation in staphylococcus aureus.
    Bissett DL; Anderson RL
    J Bacteriol; 1974 Sep; 119(3):698-704. PubMed ID: 4277494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of beta-galactosidase III: implications for entry of galactosides into Klebsiella.
    Hall BG
    J Bacteriol; 1980 May; 142(2):433-8. PubMed ID: 6769899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of D-galactosides in an open tubular lactase reactor.
    Ngo TT; Narinesingh D; Laidler KJ
    Biotechnol Bioeng; 1976 Jan; 18(1):119-27. PubMed ID: 1044283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of the inducible lactose-specific membrane-bound component of the staphylococcal phosphenolpyruvate-dependent phosphotransferase system.
    Korte T; Hengstenberg W
    Eur J Biochem; 1971 Nov; 23(2):295-302. PubMed ID: 5156374
    [No Abstract]   [Full Text] [Related]  

  • 20. Lactose metabolism involving phospho-beta-galactosidase in Klebsiella.
    Hall BG
    J Bacteriol; 1979 Jun; 138(3):691-8. PubMed ID: 110764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.