These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 5808175)
1. Availability and production of short-lived positron emitters by compact cyclotrons. Stickley EE Radiol Clin North Am; 1969 Aug; 7(2):208-19. PubMed ID: 5808175 [No Abstract] [Full Text] [Related]
2. The cyclotron: source of short-lived radionuclides and positron emitters for medicine. Laughlin JS; Tilbury RS; Dahl JR Prog At Med; 1971; 3():39-62. PubMed ID: 4946938 [No Abstract] [Full Text] [Related]
4. Cyclotron produced short-lived radioactive isotopes in nuclear medicine. Ter-Pogossian MM J Nucl Med; 1967 May; 8(5):374. PubMed ID: 6032683 [No Abstract] [Full Text] [Related]
5. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities. Zanzonico P; Dauer L; St Germain J Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690 [TBL] [Abstract][Full Text] [Related]
6. Positron emission tomography: physics, instrumentation, and image analysis. Porenta G Wien Klin Wochenschr; 1994; 106(15):466-77. PubMed ID: 7941595 [TBL] [Abstract][Full Text] [Related]
7. Radionuclide decay schemes and nuclear parameters for use in radiation-dose estimation. Dillman LT J Nucl Med; 1969 Mar; 10():Suppl 2:1-32. PubMed ID: 5775811 [No Abstract] [Full Text] [Related]
8. [Current status and the future of medical cyclotrons]. Arimizu N Rinsho Hoshasen; 1972 Feb; 17(2):81-91. PubMed ID: 4482057 [No Abstract] [Full Text] [Related]
9. Production of 52 Fe by the 55 Mn(p,4n) 52 Fe reaction for medical use. Saha GB; Farrer PA Int J Appl Radiat Isot; 1971 Aug; 22(8):495-8. PubMed ID: 5097085 [No Abstract] [Full Text] [Related]
10. Radiation safety review for 511-keV emitters in nuclear medicine. Dell MA J Nucl Med Technol; 1997 Mar; 25(1):12-7; quiz 33. PubMed ID: 9239598 [TBL] [Abstract][Full Text] [Related]
11. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y. Pal S; Chattopadhyay S; Das MK; Sudersanan M Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676 [TBL] [Abstract][Full Text] [Related]
12. Formation of short-lived positron emitters in reactions of protons of energies up to 200 MeV with the target elements carbon, nitrogen and oxygen. Kettern K; Shubin YN; Steyn GF; Van Der Walt TN; Coenen HH; Qaim SM Appl Radiat Isot; 2004 Jun; 60(6):939-45. PubMed ID: 15110360 [TBL] [Abstract][Full Text] [Related]
14. Positron emission tomography: background, possibilities and perspectives in neuroscience. Paans AM Acta Neurol Belg; 1997 Sep; 97(3):150-3. PubMed ID: 9345585 [TBL] [Abstract][Full Text] [Related]
15. On the production of 123 I for medical use. Lebowitz E; Greene MW; Richards P Int J Appl Radiat Isot; 1971 Aug; 22(8):489-91. PubMed ID: 5097084 [No Abstract] [Full Text] [Related]
16. [Osteoscintigraphy by short-lived radionuclides and positron camera]. Lorenz WJ; Krauss O; Maier-Borst W; Nuri M; Ostertag H; Scheer KE; Sinn H Radiobiol Radiother (Berl); 1970; 11(2):171-7. PubMed ID: 5509212 [No Abstract] [Full Text] [Related]
18. Available and potential short half-lived radionuclide generators. Harris CC Radiol Clin North Am; 1969 Aug; 7(2):221-32. PubMed ID: 5808176 [No Abstract] [Full Text] [Related]
19. Accelerating production of medical isotopes. Ruth T Nature; 2009 Jan; 457(7229):536-7. PubMed ID: 19177112 [No Abstract] [Full Text] [Related]
20. Cyclotron production of radioactive isotopes for medical use. Tilbury RS; Laughlin JS Semin Nucl Med; 1974 Jul; 4(3):245-55. PubMed ID: 4601678 [No Abstract] [Full Text] [Related] [Next] [New Search]