These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 581478)
1. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Yaksh TL Brain Res; 1979 Jan; 160(1):180-5. PubMed ID: 581478 [No Abstract] [Full Text] [Related]
2. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Yaksh TL; Tyce GM Brain Res; 1979 Jul; 171(1):176-81. PubMed ID: 466437 [No Abstract] [Full Text] [Related]
3. The differential contribution of spinopetal projections to increases in vocalization and motor reflex thresholds generated by the microinjection of morphine into the periaqueductal gray. Borszcz GS; Johnson CP; Thorp MV Behav Neurosci; 1996 Apr; 110(2):368-88. PubMed ID: 8731064 [TBL] [Abstract][Full Text] [Related]
4. Differential actions of the blockade of spinal opioid, adrenergic and serotonergic receptors on the tail-flick inhibition induced by morphine microinjected into dorsal raphe and central gray in rats. Tseng LL; Tang R Neuroscience; 1989; 33(1):93-100. PubMed ID: 2557562 [TBL] [Abstract][Full Text] [Related]
5. A local serotonergic component involved in the spinal antinociceptive action of morphine. Crisp T; Smith DJ Neuropharmacology; 1989 Oct; 28(10):1047-53. PubMed ID: 2554180 [TBL] [Abstract][Full Text] [Related]
6. Noradrenaline regulation of pain-transmission in the spinal cord mediated by alpha-adrenoceptors. Kuraishi Y; Harada Y; Takagi H Brain Res; 1979 Oct; 174(2):333-6. PubMed ID: 226222 [No Abstract] [Full Text] [Related]
7. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter. Bennett GJ; Mayer DJ Brain Res; 1979 Aug; 172(2):243-57. PubMed ID: 466474 [TBL] [Abstract][Full Text] [Related]
8. Antagonism by methysergide and cinanserin of the antinociceptive action of morphine administered into the periaqueductal gray. Yaksh TL; DuChateau JC; Rudy TA Brain Res; 1976 Mar; 104(2):367-72. PubMed ID: 1260435 [No Abstract] [Full Text] [Related]
9. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways. Wigdor S; Wilcox GL J Pharmacol Exp Ther; 1987 Jul; 242(1):90-5. PubMed ID: 3612540 [TBL] [Abstract][Full Text] [Related]
10. Amygdaloid-thalamic interactions mediate the antinociceptive action of morphine microinjected into the periaqueductal gray. Borszcz GS; Streltsov NG Behav Neurosci; 2000 Jun; 114(3):574-84. PubMed ID: 10883807 [TBL] [Abstract][Full Text] [Related]
11. The role of periaqueductal grey matter and of spinal serotonergic pathways in morphine analgesia [proceedings]. Deakin JF; Dostrovsky JO; Longden A J Physiol; 1978 Feb; 275():67P-68P. PubMed ID: 633166 [No Abstract] [Full Text] [Related]
12. Analgesia, development of tolerance, and 5-hydroxytryptamine turnover in the rat after cerebral and systemic administration of morphine. Vasko MR; Vogt M Neuroscience; 1982 May; 7(5):1215-25. PubMed ID: 6180353 [TBL] [Abstract][Full Text] [Related]
13. Potentiation of morphine antinociception by monoamine reuptake inhibitors in the rat spinal cord. Taiwo YO; Fabian A; Pazoles CJ; Fields HL Pain; 1985 Apr; 21(4):329-337. PubMed ID: 4000684 [TBL] [Abstract][Full Text] [Related]
14. Interdependence of spinal adenosinergic, serotonergic and noradrenergic systems mediating antinociception. DeLander GE; Hopkins CJ Neuropharmacology; 1987 Dec; 26(12):1791-4. PubMed ID: 3437941 [TBL] [Abstract][Full Text] [Related]
15. Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Headley PM; Duggan AW; Griersmith BT Brain Res; 1978 Apr; 145(1):185-9. PubMed ID: 638777 [No Abstract] [Full Text] [Related]
16. The local monoaminergic dependency of spinal ketamine. Crisp T; Perrotti JM; Smith DL; Stafinsky JL; Smith DJ Eur J Pharmacol; 1991 Mar; 194(2-3):167-72. PubMed ID: 1647967 [TBL] [Abstract][Full Text] [Related]
17. The role of brain and spinal cord norepinephrine in autoanalgesia. Chance WT Ann N Y Acad Sci; 1986; 467():309-30. PubMed ID: 2425685 [No Abstract] [Full Text] [Related]
18. Opioid and nonopioid conditional analgesia: the role of spinal opioid, noradrenergic, and serotonergic systems. Lichtman AH; Fanselow MS Behav Neurosci; 1991 Oct; 105(5):687-98. PubMed ID: 1667731 [TBL] [Abstract][Full Text] [Related]
19. Morphine and ACTH1-24: correlative behavioral excitations following micro-injections in rat periaqueductal gray. Jacquet YF; Wolf G Brain Res; 1981 Aug; 219(1):214-8. PubMed ID: 6266601 [TBL] [Abstract][Full Text] [Related]
20. Spinal mechanisms of the analgesic action of electroconvulsive shock. Urca G; Nof-Reshef A Brain Res; 1985 Aug; 341(1):110-8. PubMed ID: 3840046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]