These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 581647)
1. Differential scanning calorimetry of dipalmitoyl phosphatidylcholine analogues and of their interaction products with basic polypeptides. Bach D; Bursuker I; Eibl H; Miller IR Biochim Biophys Acta; 1978 Dec; 514(2):310-9. PubMed ID: 581647 [TBL] [Abstract][Full Text] [Related]
2. Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions. Derksen A; Gantz D; Small DM Biophys J; 1996 Jan; 70(1):330-8. PubMed ID: 8770209 [TBL] [Abstract][Full Text] [Related]
3. Calorimetric, 13C NMR, and 31P NMR studies on the interaction of some phenothiazine derivatives with dipalmitoyl phosphatidylcholine model membranes. Frenzel J; Arnold K; Nuhn P Biochim Biophys Acta; 1978 Feb; 507(2):185-97. PubMed ID: 580062 [TBL] [Abstract][Full Text] [Related]
4. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Lewis RN; Pohle W; McElhaney RN Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311 [TBL] [Abstract][Full Text] [Related]
5. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
6. Differential scanning calorimetry of chain-melting phase transitions of N-acylphosphatidylethanolamines. Swamy MJ; Marsh D; Ramakrishnan M Biophys J; 1997 Nov; 73(5):2556-64. PubMed ID: 9370449 [TBL] [Abstract][Full Text] [Related]
7. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes. de Kruijff B; Cullis PR; Radda GK Biochim Biophys Acta; 1975 Sep; 406(1):6-20. PubMed ID: 1242108 [TBL] [Abstract][Full Text] [Related]
8. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
10. Differential scanning calorimetric studies on the thermotropic phase transitions of dry and hydrated forms of N-acylethanolamines of even chainlengths. Ramakrishnan M; Sheeba V; Komath SS; Swamy MJ Biochim Biophys Acta; 1997 Oct; 1329(2):302-10. PubMed ID: 9371422 [TBL] [Abstract][Full Text] [Related]
11. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
12. Conformational nonequivalence of chains 1 and 2 of dipalmitoyl phosphatidylcholine as observed by Raman spectroscopy. Gaber BP; Yager P; Peticolas WL Biophys J; 1978 Dec; 24(3):677-88. PubMed ID: 581650 [TBL] [Abstract][Full Text] [Related]
13. Thermotropic behavior of glycosphingolipids in aqueous dispersions. Maggio B; Ariga T; Sturtevant JM; Yu RK Biochemistry; 1985 Feb; 24(5):1084-92. PubMed ID: 4096890 [TBL] [Abstract][Full Text] [Related]
14. Phospholipid structure determines the effects of peptides on membranes. Differential scanning calorimetry studies with pentagastrin-related peptides. Surewicz WK; Epand RM Biochim Biophys Acta; 1986 Apr; 856(2):290-300. PubMed ID: 3955044 [TBL] [Abstract][Full Text] [Related]
16. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
17. The effect of hashish compounds on pphospholipid phase transition. Bach D; Raz A; Goldman R Biochim Biophys Acta; 1976 Jul; 436(4):889-94. PubMed ID: 952922 [TBL] [Abstract][Full Text] [Related]
18. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Shah J; Duclos RI; Shipley GG Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196 [TBL] [Abstract][Full Text] [Related]
19. Physicochemical properties of dipalmitoyl phosphatidylcholine after interaction with an apolipoprotein of pulmonary surfactant. King RJ; Macbeth MC Biochim Biophys Acta; 1979 Oct; 557(1):86-101. PubMed ID: 583570 [TBL] [Abstract][Full Text] [Related]
20. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. McMullen TP; Lewis RN; McElhaney RN Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]