These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 5817129)

  • 41. Enzymatic sulfation of steroids by bovine tissues.
    Holcenberg JS; Rosen SW
    Arch Biochem Biophys; 1965 Jun; 110(3):551-7. PubMed ID: 4221028
    [No Abstract]   [Full Text] [Related]  

  • 42. Renal tubular conjugation and excretion of phenol and p-nitrophenol in the chicken: differing mechanisms of renal transfer.
    Quebbemann AJ; Anders MW
    J Pharmacol Exp Ther; 1973 Mar; 184(3):695-708. PubMed ID: 4687232
    [No Abstract]   [Full Text] [Related]  

  • 43. Effects of activators in vitro on rabbit lung and liver microsomal UDP-glucuronyltransferase activity.
    Mimnaugh EG; Litterst CI; Gram TE
    Biochem Pharmacol; 1975 Sep; 24(17):1633-5. PubMed ID: 811228
    [No Abstract]   [Full Text] [Related]  

  • 44. N-oxidation of certain aromatic amines, acetamides, and nitro compounds by monkeys and dogs.
    Radomski JL; Conzelman GM
    J Natl Cancer Inst; 1973 Apr; 50(4):989-95. PubMed ID: 4634087
    [No Abstract]   [Full Text] [Related]  

  • 45. Differentiation of homologous forms of hepatic microsomal UDP-glucuronyltransferase. I. Evidence for the glucuronidation of o-aminophenol and p-nitrophenol by separate enzymes.
    Zakim D; Goldenberg J; Vessey DA
    Biochim Biophys Acta; 1973 May; 309(1):67-74. PubMed ID: 4196677
    [No Abstract]   [Full Text] [Related]  

  • 46. Metabolism of 3-trifluoromethyl-4-nitrophenol in the rat.
    Lech JJ
    Toxicol Appl Pharmacol; 1971 Oct; 20(2):216-26. PubMed ID: 5133253
    [No Abstract]   [Full Text] [Related]  

  • 47. Accumulation of phenols and catechols in isolated mouse hepatocytes in starvation or after pretreatment with acetone.
    Bánhegyi G; Garzó T; Antoni F; Mandl J
    Biochem Pharmacol; 1988 Nov; 37(21):4157-62. PubMed ID: 3190754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide.
    Kitamura S; Sugihara K; Kuwasako M; Tatsumi K
    J Pharm Pharmacol; 1997 Mar; 49(3):253-6. PubMed ID: 9231340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular antioxidant activity and in vitro intestinal permeability of phenolic compounds from four varieties of mango bark (Mangifera indica L.).
    Vazquez-Olivo G; Antunes-Ricardo M; Gutiérrez-Uribe JA; Osuna-Enciso T; León-Félix J; Heredia JB
    J Sci Food Agric; 2019 May; 99(7):3481-3489. PubMed ID: 30623436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduction of stilbene oxide and styrene oxide to the corresponding alkenes by intestinal bacteria.
    Kitamura S; Mita M; Matsuda K; Ohta S; Tatsumi K
    Xenobiotica; 2000 Apr; 30(4):359-69. PubMed ID: 10821165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota.
    Lee HC; Jenner AM; Low CS; Lee YK
    Res Microbiol; 2006 Nov; 157(9):876-84. PubMed ID: 16962743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrolysis of fatty acyl esters of p-nitrophenol by homogenates of intestinal mucosa of different animal species.
    Szafran Z
    Acta Biochim Pol; 1965; 12(3):259-64. PubMed ID: 5882690
    [No Abstract]   [Full Text] [Related]  

  • 53. Studies on flavonoid metabolism. Degradation of (plus)-catechin by rat intestinal contents.
    Das NP
    Biochim Biophys Acta; 1969 May; 177(3):668-70. PubMed ID: 5819247
    [No Abstract]   [Full Text] [Related]  

  • 54. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel reductive system involving flavoprotein in the rat intestine.
    Esaac EG; Matsumura F
    Bull Environ Contam Toxicol; 1978 Jan; 19(1):15-22. PubMed ID: 630142
    [No Abstract]   [Full Text] [Related]  

  • 56. Competition between p-aminophenol, p-nitrophenol, and bilirubin for glucuronidation in cultures of rat hepatoma cells and homogenates of the same cells.
    Rugstad HE; Dybing E
    Acta Pharmacol Toxicol (Copenh); 1974 Jan; 34(1):65-75. PubMed ID: 4364170
    [No Abstract]   [Full Text] [Related]  

  • 57. New pathways in the oxidative metabolism of aromatic compounds by microorganisms.
    DAGLEY S; EVANS WC; RIBBONS DW
    Nature; 1960 Nov; 188():560-6. PubMed ID: 13719300
    [No Abstract]   [Full Text] [Related]  

  • 58. The composition of intestinal bacteria affects the level of luminal IgA.
    Ohashi Y; Hiraguchi M; Ushida K
    Biosci Biotechnol Biochem; 2006 Dec; 70(12):3031-5. PubMed ID: 17151442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis.
    Meisel M; Mayassi T; Fehlner-Peach H; Koval JC; O'Brien SL; Hinterleitner R; Lesko K; Kim S; Bouziat R; Chen L; Weber CR; Mazmanian SK; Jabri B; Antonopoulos DA
    ISME J; 2017 Jan; 11(1):15-30. PubMed ID: 27648810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clearence of antibiotics from the intestines after termination of antibiotic decontamination.
    van der Waaij D; Fekkerkerk-van der Wees JE; Heidt PJ
    J Hyg (Lond); 1974 Dec; 73(3):409-14. PubMed ID: 4531450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.