These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5817825)

  • 1. Structure-activity relations in organophosphorus-inhibited acetylcholinesterase reactivators. II. Methiodides of hydroxyimino derivatives of 1-pyridyl-2-phenylethanes.
    Franchetti P; Grifantini M; Martelli S
    J Pharm Sci; 1969 Jul; 58(7):857-60. PubMed ID: 5817825
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure-activity relation in organophosphorus-inhibited acetylcholinesterase reactivators. 3. Methiodides of hydroxyimino derivatives of pyridylethanes.
    Franchetti P; Grifantini M; Stein ML
    J Pharm Sci; 1970 May; 59(5):710-1. PubMed ID: 5446435
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure-activity relations in organophosphorus inhibited acetylcholinesterase reactivators. I. Methiodides of new mono- and dioximes with pyridine nucleus.
    Grifantini M; Martelli S; Stein ML
    J Pharm Sci; 1969 Apr; 58(4):460-4. PubMed ID: 5787445
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure-activity relationships in reactivators of organophosphorus-inhibited acetylcholinesterase. 10. Hydroxyiminomethylarylethenylpyridine methiodides.
    Arena F; Manna F; Pizza C; Stein ML; Grifantini M
    J Med Chem; 1975 Nov; 18(11):1147-50. PubMed ID: 1177261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships in reactivators of organophosphorus-inhibited acetylcholinesterase. 9. N-Heterocyclic acraldoximes methiodides.
    Franchetti P; Grifantini M; Martelli S
    J Med Chem; 1975 Aug; 18(8):839-42. PubMed ID: 1159702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationships in reactivators of organophosphorus-inhibited acetylcholinesterase. 6. 2-Hydroxyiminomethylimidazolium iodides.
    Grifantini M; Martelli S; Stein ML
    J Med Chem; 1973 Aug; 16(8):937-9. PubMed ID: 4745838
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure-activity relationships in reactivators of organophosphorus-inhibited acetylcholinesterase. V. Quaternary salts of hydroxyiminomethylimidazoles.
    Grifantini M; Martelli S; Stein ML
    J Pharm Sci; 1972 Apr; 61(4):631-3. PubMed ID: 5062578
    [No Abstract]   [Full Text] [Related]  

  • 8. Ions of the rare earths as possible reactivators of acetylcholinesterase inhibited by some organophosphorus compounds.
    Howells DJ; Coult DB
    Biochim Biophys Acta; 1971 Aug; 244(2):427-31. PubMed ID: 5166494
    [No Abstract]   [Full Text] [Related]  

  • 9. Stereoisomeric lactoyl-beta-methylcholine iodides. Interaction with cholinesterase and acetylcholinesterase.
    Chan MM; Robinson JB
    J Med Chem; 1974 Oct; 17(10):1057-60. PubMed ID: 4472740
    [No Abstract]   [Full Text] [Related]  

  • 10. Reactivation of isopropyl-methylphosphonylated acetylcholinesterase by , -bis-(4-hydroxyimino-methylpyridinium)-2-trans-butene dibromide--the effect of pH.
    Patocka J; Bielavský J
    Biochem Pharmacol; 1972 Mar; 21(5):742-5. PubMed ID: 5063172
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure-activity relationships in reactivators of organophosphorus-inhibited acetylcholinesterase. 7. 1-Aryl-2-hydroxyiminomethyl-3-methylimidazolium iodides.
    Franchetti P; Grifantini M; Martelli S
    J Med Chem; 1974 Jan; 17(1):18-22. PubMed ID: 4808466
    [No Abstract]   [Full Text] [Related]  

  • 12. Acetylcholinesterase reactivators. Pyridyl and anilyl trifluoromethyl ketoximes.
    Salvador RL; Saucier M; Simon D; Goyer R
    J Med Chem; 1972 Jun; 15(6):646-50. PubMed ID: 5030933
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of histidine modification on the aging of organophosphate-inhibited acetylcholinesterase.
    Beauregard G; Lum J; Roufogalis BD
    Biochem Pharmacol; 1981 Nov; 30(21):2915-20. PubMed ID: 7317087
    [No Abstract]   [Full Text] [Related]  

  • 14. [Phosphonyloxime of soman; formation and reaction with acetylcholinesterase in vitro].
    Schoene K
    Biochem Pharmacol; 1973 Dec; 22(23):2997-3003. PubMed ID: 4586721
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the interaction between inhibitors of drug metabolism and horse plasma cholinesterase.
    Diaz Gomez MI; Castro JA
    Biochem Pharmacol; 1971 May; 20(5):929-42. PubMed ID: 5168393
    [No Abstract]   [Full Text] [Related]  

  • 16. Catalytic versatility of erythrocyte carbonic anhydrase. Kinetic studies of the enzyme-catalyzed hydrolysis of methyl pyridyl carbonates.
    Pocker Y; Guilbert LJ
    Biochemistry; 1972 Jan; 11(2):180-90. PubMed ID: 4621581
    [No Abstract]   [Full Text] [Related]  

  • 17. Chromogenic substrates for cholinesterases: 1-(2-thiazolylazo)-2-acetoxybenzene derivatives.
    van Hooidonk C; de Borst C; Mitzka FA; Groos CC
    Anal Biochem; 1972 Jul; 48(1):33-44. PubMed ID: 5064920
    [No Abstract]   [Full Text] [Related]  

  • 18. Acetylcholinesterase hydrolysis of halogen substituted acetylcholines.
    Chiou CY; Sastry BV
    Biochem Pharmacol; 1968 May; 17(5):805-15. PubMed ID: 5689803
    [No Abstract]   [Full Text] [Related]  

  • 19. Nonquaternary cholinesterase reactivators. 4. Dialkylaminoalkyl thioesters of alpha-keto thiohydroximic acids as reactivators of ethyl methylphosphonyl- and 1,2,2-trimethylpropyl methylphosphonyl-acetylcholinesterase in vitro.
    Bedford CD; Miura M; Bottaro JC; Howd RA; Nolen HW
    J Med Chem; 1986 Sep; 29(9):1689-96. PubMed ID: 3746817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetics of hydrolysis of the phenyl analog of acetylcholine under the action of cholinesterase from horse serum and acetylcholinesterase from bovine erythrocytes].
    Brestkin AP; Brik IL; Teplov NE
    Biokhimiia; 1968; 33(5):1059-68. PubMed ID: 5703735
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.