These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 5821889)

  • 1. A sampling technique for following 32P turnover and net changes in phosphate compounds in crab muscle fibres.
    Caldwell PC
    J Physiol; 1969 Jul; 203(1):31P. PubMed ID: 5821889
    [No Abstract]   [Full Text] [Related]  

  • 2. The turnover of phosphorus compounds in crab muscle fibres.
    Caldwell PC; Walster GE
    J Physiol; 1975 Jun; 248(1):1-13. PubMed ID: 1151796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The incorporation of radioactive phosphate into ATP in glycerinated fibres stretched or released during contraction.
    Gillis JM; Maréchal G
    J Mechanochem Cell Motil; 1974; 3(1):55-68. PubMed ID: 4457581
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein-bound acid-labile phosphate. Isolation of 1-32P-phosphohistidine and 3-32P-phosphohistidine from some mammalian and microbial cell extracts incubated with adenosine triphosphate-32P.
    Wålinder O
    J Biol Chem; 1969 Feb; 244(3):1065-9. PubMed ID: 4889947
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphate exchange between high-energy phosphate compounds in resting crustacean muscle.
    Alvarez R; Luxoro M; Nassar-Gentina V; Szklarz G
    Q J Exp Physiol Cogn Med Sci; 1980 Jul; 65(3):199-205. PubMed ID: 6902967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretch induced formation of ATP-32P in glycerinated fibres of insect flight muscle.
    Ulbrich M; Rüegg JC
    Experientia; 1971 Jan; 27(1):45-6. PubMed ID: 5549237
    [No Abstract]   [Full Text] [Related]  

  • 7. Incorporation of 32P orthophosphate into energy-rich compounds of muscles of Schistocerca gregaria during rest and flight.
    Strunecká A; Kubista V
    Physiol Bohemoslov; 1974; 23(5):395-405. PubMed ID: 4283673
    [No Abstract]   [Full Text] [Related]  

  • 8. Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle?
    Kinsey ST; Pathi P; Hardy KM; Jordan A; Locke BR
    J Exp Biol; 2005 Jul; 208(Pt 14):2641-52. PubMed ID: 16000534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting metabolism of inorganic phosphorus and changes during mechanical activation in perfused muscle fibres from Balanus.
    Nassar-Gentina V; Rojas E
    Q J Exp Physiol Cogn Med Sci; 1980 Jul; 65(3):189-98. PubMed ID: 6902966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical changes in denervated skeletal muscle. II. Labelling patterns of the main phosphate fractions in normal and denervated rat-gastrocnemius muscle using 32Pi as indicator.
    Graff GL; Hudson AJ; Strickland KP
    Biochim Biophys Acta; 1965 Jul; 104(2):532-42. PubMed ID: 5855059
    [No Abstract]   [Full Text] [Related]  

  • 11. High-energy phosphate compounds during exercise in human slow-twitch and fast-twitch muscle fibres.
    Rehunen S; Näveri H; Kuoppasalmi K; Härkönen M
    Scand J Clin Lab Invest; 1982 Oct; 42(6):499-506. PubMed ID: 7156863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The exchange of 18O between water and phosphate compounds in isolated frog sartorius muscle under conditions of negative work.
    Maréchal G; Mommaerts WF; Seraydarian K
    J Mechanochem Cell Motil; 1974; 3(1):39-54. PubMed ID: 4457580
    [No Abstract]   [Full Text] [Related]  

  • 13. [The content of some phosphoric compounds in antagonistic muscles; role of the reticular formation in their homeostasis].
    Dorogan D; Filip M; Haller C
    Fiziol Norm Patol; 1969; 15(3):241-8. PubMed ID: 5344078
    [No Abstract]   [Full Text] [Related]  

  • 14. [Content of phosphorus compounds in the white pectoral and red femoral muscles of fowls].
    Kiselev GI; Kiseleva LG
    Ukr Biokhim Zh; 1965; 37(2):279-82. PubMed ID: 5869087
    [No Abstract]   [Full Text] [Related]  

  • 15. [Increase of the absolute ATP conversion rate in isolated skeletal muscles under the influence of 2,4-dinitrophenol. Turnover studies with P32-labelled orthophosphate and H2O18].
    Janke J; Fleckenstein A; Marmier P; Koenig L
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1966; 287(1):9-28. PubMed ID: 5233555
    [No Abstract]   [Full Text] [Related]  

  • 16. [Age characteristics in the metabolism of high-energy phosphate compounds in skeletal muscles during rest and work].
    Frol'kis VV; Epshteĭn EV
    Vopr Med Khim; 1966; 12(3):248-53. PubMed ID: 6000890
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study.
    Balschi JA; Henderson T; Bradley EL; Gelman S
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):346-56. PubMed ID: 8341075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Estimation of inorganic phosphate exchange in rat gastrocemiums muscle].
    Graff GL; Gueuning C
    C R Seances Soc Biol Fil; 1968 Nov; 162(4):1008-12. PubMed ID: 4235875
    [No Abstract]   [Full Text] [Related]  

  • 19. Possible role in contraction of structurally bound phosphate of muscle.
    Cheesman DF; Whitehead A
    Nature; 1969 Feb; 221(5182):736-9. PubMed ID: 5766643
    [No Abstract]   [Full Text] [Related]  

  • 20. An ATP pool with rapid turnover within the cell membrane.
    Biochem Biophys Res Commun; 1972 Aug; 48(3):598-604. PubMed ID: 4340111
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.