These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Failure of the Nernst-Einstein equation to correlate electrical resistances and rates of ionic self-exchange across certain fixed charge membranes. Gottlieb MH; Sollner K Biophys J; 1968 May; 8(5):515-35. PubMed ID: 5699793 [TBL] [Abstract][Full Text] [Related]
5. The steady-state properties of an ion exchange membrane with mobile sites. Conti F; Eisenman G Biophys J; 1966 May; 6(3):227-46. PubMed ID: 5962278 [TBL] [Abstract][Full Text] [Related]
6. Concentration dependence of permeability coefficient to an electrolyte component across bovine lens capsule in vitro. Takeguchi N; Nakagaki M Biophys J; 1969 Aug; 9(8):1029-44. PubMed ID: 5822427 [TBL] [Abstract][Full Text] [Related]
7. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane]. Batko KM; Slezak-Prochazka I; Slezak A Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289 [TBL] [Abstract][Full Text] [Related]
8. Studies with composite membranes. II. Measurement of asymmetric properties. Lakshminarayanaiah N; Siddiqi FA Biophys J; 1971 Jul; 11(7):617-28. PubMed ID: 5089918 [TBL] [Abstract][Full Text] [Related]
10. [Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters]. Slezak A; Grzegorczyn S; Prochazka B Polim Med; 2007; 37(3):47-57. PubMed ID: 18251204 [TBL] [Abstract][Full Text] [Related]
11. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes. Slezak A; Grzegorczyn S Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232 [TBL] [Abstract][Full Text] [Related]
12. A physical interpretation of the phenomenological coefficients of membrane permeability. KEDEM O; KATCHALSKY A J Gen Physiol; 1961 Sep; 45(1):143-79. PubMed ID: 13752127 [TBL] [Abstract][Full Text] [Related]
13. Mass transfer in the cornea. I. Interacting ion flows in an arbitrarily charged membrane. Friedman MH Biophys J; 1970 Nov; 10(11):1013-28. PubMed ID: 5471695 [TBL] [Abstract][Full Text] [Related]
14. Mass transfer in the cornea. II. Ion transport and electrical properties of a series membrane tissue. Friedman MH Biophys J; 1972 Apr; 12(4):325-50. PubMed ID: 5063051 [TBL] [Abstract][Full Text] [Related]
15. The independence principle. A reconsideration. Mackey MC; McNeel ML Biophys J; 1971 Aug; 11(8):675-80. PubMed ID: 5116583 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of the electric response of lipid bilayers to bitter substances. Naito M; Sasaki N; Kambara T Biophys J; 1993 Sep; 65(3):1219-30. PubMed ID: 8241402 [TBL] [Abstract][Full Text] [Related]
17. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A; Grzegorczyn S Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950 [TBL] [Abstract][Full Text] [Related]
18. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization]. Slezak A Polim Med; 2010; 40(1):15-24. PubMed ID: 20446525 [TBL] [Abstract][Full Text] [Related]
19. THE NON-STEADY STATE MEMBRANE POTENTIAL OF ION EXCHANGERS WITH FIXED SITES. CONTI F; EISENMAN G Biophys J; 1965 Mar; 5(2):247-56. PubMed ID: 14268957 [TBL] [Abstract][Full Text] [Related]
20. The sodium-potassium exchange pump. II. Analysis of Na + -loaded frog sartorius muscle. Rapoport SI Biophys J; 1971 Aug; 11(8):631-47. PubMed ID: 5116580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]