These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 5822429)
1. Calculations of pulsatile flow across bifurcations in distensible tubes. Hunt WA Biophys J; 1969 Aug; 9(8):993-1005. PubMed ID: 5822429 [TBL] [Abstract][Full Text] [Related]
2. [The efficiency of heat exchange between the tissues and the blood in blood vessels of different diameters]. Ivanov KP; Luchakov IuI Fiziol Zh Im I M Sechenova; 1994 Mar; 80(3):100-5. PubMed ID: 7527693 [TBL] [Abstract][Full Text] [Related]
4. The dynamics of collapsible tubes. Bertram CD Symp Soc Exp Biol; 1995; 49():253-64. PubMed ID: 8571228 [TBL] [Abstract][Full Text] [Related]
5. Biophysical analyses of blood vessel walls and blood flow. Roach MR Annu Rev Physiol; 1977; 39():51-71. PubMed ID: 139845 [No Abstract] [Full Text] [Related]
6. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes. Chiles C; Ravin CE Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761 [TBL] [Abstract][Full Text] [Related]
7. A theory of fluid flow in compliant tubes. Barnard AC; Hunt WA; Timlake WP; Varley E Biophys J; 1966 Nov; 6(6):717-24. PubMed ID: 5972373 [TBL] [Abstract][Full Text] [Related]
8. [A model for the distribution of flow rates in the vascular bed]. Lefort M; Stoltz JF; Larcan A Angiologica; 1971; 8(2):65-76. PubMed ID: 5120566 [No Abstract] [Full Text] [Related]
12. Wave motions in a collapsible tube conveying fluid. Matsuzaki Y; Matsumoto T Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240 [TBL] [Abstract][Full Text] [Related]
13. Frequency dynamics of peripheral vascular blood flow. Attinger EO; Attinger FM Annu Rev Biophys Bioeng; 1973; 2():7-36. PubMed ID: 4583659 [No Abstract] [Full Text] [Related]
14. The effect of the skin friction on the solution of the one-dimensional equations of pulsatile flow in distensible tubes. Gerrard JH Med Biol Eng Comput; 1981 Jan; 19(1):79-82. PubMed ID: 7278412 [No Abstract] [Full Text] [Related]
15. Flow in nonuniform small blood vessels. Lee JS; Fung YC Microvasc Res; 1971 Jul; 3(3):272-87. PubMed ID: 5111905 [No Abstract] [Full Text] [Related]
17. Physiological flow waveform in a rigid elliptical vessel. Robertson MB; Köhler U IMA J Math Appl Med Biol; 2001 Mar; 18(1):77-98. PubMed ID: 11339339 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance velocity imaging: a new method for prosthetic heart valve study. Walker PG; Pedersen EM; Oyre S; Flepp L; Ringgaard S; Heinrich RS; Walton SP; Hasenkam JM; Jorgensen HS; Yoganathan AP J Heart Valve Dis; 1995 May; 4(3):296-307. PubMed ID: 7655694 [TBL] [Abstract][Full Text] [Related]
19. [The numerical simulation of pulsatile flow in a tapered blood vessel]. Qiu L; Fan Y; Dong B; Yuan Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):558-61. PubMed ID: 15357431 [TBL] [Abstract][Full Text] [Related]
20. Pulsatile flow in tapered tubes: a model of blood flow with large disturbances. Kimmel E; Dinnar U J Biomech Eng; 1983 May; 105(2):112-9. PubMed ID: 6865352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]